A deep learning, image based approach for automated diagnosis for inflammatory skin diseases

被引:58
|
作者
Wu, Haijing [1 ]
Yin, Heng [1 ]
Chen, Haipeng [2 ]
Sun, Moyuan [2 ]
Liu, Xiaoqing [2 ]
Yu, Yizhou [2 ]
Tang, Yang [3 ]
Long, Hai [1 ]
Zhang, Bo [1 ]
Zhang, Jing [1 ]
Zhou, Ying [1 ]
Li, Yaping [1 ]
Zhang, Guiyuing [1 ]
Zhang, Peng [1 ]
Zhan, Yi [1 ]
Liao, Jieyue [1 ]
Luo, Shuaihantian [1 ]
Xiao, Rong [1 ]
Su, Yuwen [1 ]
Zhao, Juanjuan [3 ]
Wang, Fei [3 ]
Zhane, Jing [3 ]
Zhang, Wei [3 ]
Zhang, Jin [3 ]
Lu, Qianjin [1 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Dermatol, Hunan Key Lab Med Epigen, Changsha 410011, Peoples R China
[2] DeepWise AI Lab, Beijing 100080, Peoples R China
[3] Guanlan Networks Hangzhou Co Ltd, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; psoriasis (Pso); eczema (Ecz); atopic dermatitis (AD); artificial intelligence;
D O I
10.21037/atm.2020.04.39
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: As the booming of deep learning era, especially the advances in convolutional neural networks (CNNs), CNNs have been applied in medicine fields like radiology and pathology. However, the application of CNNs in dermatology, which is also based on images, is very limited. Inflammatory skin diseases, such as psoriasis (Pso), eczema (Ecz), and atopic dermatitis (AD), are very easily to be mis-diagnosed in practice. Methods: Based on the EfficientNet-b4 CNN algorithm, we developed an artificial intelligence dermatology diagnosis assistant (AIDDA) for Pso, Ecz & AD and healthy skins (HC). The proposed CNN model was trained based on 4,740 clinical images, and the performance was evaluated on experts-confirmed clinical images grouped into 3 different dermatologist-labelled diagnosis classifications (HC, Pso, Ecz & AD). Results: The overall diagnosis accuracy of AIDDA is 95.80%+/- 0.09%, with the sensitivity of 94.40%+/- 0.12% and specificity 97.20%+/- 0.06%. AIDDA showed accuracy for Pso is 89.46%, with sensitivity of 91.4% and specificity of 95.48%, and accuracy for AD & Ecz 92.57%, with sensitivity of 94.56% and specificity of 94.41%. Conclusions: AIDDA is thus already achieving an impact in the diagnosis of inflammatory skin diseases, highlighting how deep learning network tools can help advance clinical practice.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A Visually Interpretable Deep Learning Framework for Histopathological Image-Based Skin Cancer Diagnosis
    Jiang, Shancheng
    Li, Huichuan
    Jin, Zhi
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (05) : 1483 - 1494
  • [32] Diagnosis and application of rice diseases based on deep learning
    Li K.
    Li X.
    Liu B.
    Ge C.
    Zhang Y.
    Chen L.
    PeerJ Computer Science, 2023, 9
  • [33] Diagnosis and application of rice diseases based on deep learning
    Li, Ke
    Li, Xiao
    Liu, Bingkai
    Ge, Chengxin
    Zhang, Youhua
    Chen, Li
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [34] RETRACTED ARTICLE: A hybrid deep learning strategy for image based automated prognosis of skin diseaseA hybrid deep learning strategy for image-based automated prognosis of skin diseaseG. M. Rao et al.
    G. Madhukar Rao
    Dharavath Ramesh
    Prabhakar Gantela
    K. Srinivas
    Soft Computing, 2024, 28 (Suppl 2) : 483 - 483
  • [35] Insight into Automatic Image Diagnosis of Ear Conditions Based on Optimized Deep Learning Approach
    Heba M. Afify
    Kamel K. Mohammed
    Aboul Ella Hassanien
    Annals of Biomedical Engineering, 2024, 52 : 865 - 876
  • [36] Efficient Deep-Learning-Based Autoencoder Denoising Approach for Medical Image Diagnosis
    El-Shafai, Walid
    Abd El-Nabi, Samy
    El-Rabaie, El-Sayed M.
    Ali, Anas M.
    Soliman, Naglaa F.
    Algarni, Abeer D.
    Abd El-Samie, Fathi E.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 6107 - 6125
  • [37] Insight into Automatic Image Diagnosis of Ear Conditions Based on Optimized Deep Learning Approach
    Afify, Heba M.
    Mohammed, Kamel K.
    Hassanien, Aboul Ella
    ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (04) : 865 - 876
  • [38] Automated Deep Learning Based Approach for Albinism Detection
    Nijhawan, Rahul
    Juneja, Manya
    Kaur, Namneet
    Yadav, Ashima
    Budhiraja, Ishan
    RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION, RTIP2R 2022, 2023, 1704 : 272 - 281
  • [39] An Image Diagnosis Algorithm for Keratitis Based on Deep Learning
    Ji, Qingbo
    Jiang, Yue
    Qu, Lijun
    Yang, Qian
    Zhang, Han
    NEURAL PROCESSING LETTERS, 2022, 54 (03) : 2007 - 2024
  • [40] An Image Diagnosis Algorithm for Keratitis Based on Deep Learning
    Qingbo Ji
    Yue Jiang
    Lijun Qu
    Qian Yang
    Han Zhang
    Neural Processing Letters, 2022, 54 : 2007 - 2024