Steering exact penalty methods for nonlinear programming

被引:55
作者
Byrd, Richard H. [2 ]
Nocedal, Jorge [1 ]
Waltz, Richard A. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
nonlinear optimization; penalty methods; constrained optimization;
D O I
10.1080/10556780701394169
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper reviews, extends and analyses a new class of penalty methods for nonlinear optimization. These methods adjust the penalty parameter dynamically; by controlling the degree of linear feasibility achieved at every iteration, they promote balanced progress toward optimality and feasibility. In contrast with classical approaches, the choice of the penalty parameter ceases to be a heuristic and is determined, instead, by a subproblem with clearly defined objectives. The new penalty update strategy is presented in the context of sequential quadratic programming and sequential linear-quadratic programming methods that use trust regions to promote convergence. The paper concludes with a discussion of penalty parameters for merit functions used in line search methods.
引用
收藏
页码:197 / 213
页数:17
相关论文
共 43 条
[1]   Global convergence of an elastic mode approach for a class of mathematical programs with complementarity constraints [J].
Anitescu, M .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (01) :120-145
[2]  
[Anonymous], 2000, PREPRINT ANLMCS P
[3]  
[Anonymous], 1985, NUMERICAL OPTIMIZATI
[4]  
[Anonymous], [No title captured]
[5]  
BENSON HY, 2003, ORFE0302 PRINC U DEP
[6]   A ROBUST TRUST REGION METHOD FOR CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS [J].
Burke, James V. .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (02) :325-347
[7]   On the convergence of successive linear-quadratic programming algorithms [J].
Byrd, RH ;
Gould, NIM ;
Nocedal, J ;
Waltz, RA .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :471-489
[8]   An algorithm for nonlinear optimization using linear programming and equality constrained subproblems [J].
Byrd, RH ;
Gould, NIM ;
Nocedal, J ;
Waltz, RA .
MATHEMATICAL PROGRAMMING, 2004, 100 (01) :27-48
[9]   An interior point algorithm for large-scale nonlinear programming [J].
Byrd, RH ;
Hribar, ME ;
Nocedal, J .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) :877-900
[10]   Interior-point l2-penalty methods for nonlinear programming with strong global convergence properties [J].
Chen, L. ;
Goldfarb, D. .
MATHEMATICAL PROGRAMMING, 2006, 108 (01) :1-36