Estrada index and Chebyshev polynomials

被引:23
作者
Ginosar, Yuval [2 ]
Gutman, Ivan [1 ]
Mansour, Toufik [2 ]
Schork, Matthias
机构
[1] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
[2] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
D O I
10.1016/j.cplett.2008.02.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Let G be a graph whose eigenvalues are lambda(1), lambda(2),..., lambda(n). The Estrada index of G is equal to Sigma(n)(i=1)e(lambda i) . We point out certain classes of graphs whose characteristic polynomials are closely connected to the Chebyshev polynomials of the second kind. Various relations, in particular approximations, for the Estrada index of these graphs are obtained. (c) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:145 / 147
页数:3
相关论文
共 16 条
  • [1] ABRAMOWITZ M, 1964, HDB MATH FUNCTIONS N
  • [2] [Anonymous], 1980, SPECTRA GRAPHS THEOR
  • [3] Spectral measures of bipartivity in complex networks -: art. no. 046105
    Estrada, E
    Rodríguez-Velázquez, JA
    [J]. PHYSICAL REVIEW E, 2005, 72 (04):
  • [4] Subgraph centrality in complex networks -: art. no. 056103
    Estrada, E
    Rodríguez-Velázquez, JA
    [J]. PHYSICAL REVIEW E, 2005, 71 (05)
  • [5] Atomic branching in molecules
    Estrada, E
    Rodríguez-Velázquez, JA
    Randic, M
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2006, 106 (04) : 823 - 832
  • [6] Characterization of the amino acid contribution to the folding degree of proteins
    Estrada, E
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 54 (04) : 727 - 737
  • [7] Characterization of the folding degree of proteins
    Estrada, E
    [J]. BIOINFORMATICS, 2002, 18 (05) : 697 - 704
  • [8] Topological structural classes of complex networks
    Estrada, Ernesto
    [J]. PHYSICAL REVIEW E, 2007, 75 (01):
  • [9] Statistical-mechanical approach to subgraph centrality in complex networks
    Estrada, Ernesto
    Hatano, Naomichi
    [J]. CHEMICAL PHYSICS LETTERS, 2007, 439 (1-3) : 247 - 251
  • [10] Godsil C., 1978, Bull. Austral. Math. Soc., V18, P21, DOI [10.1017/S0004972700007760 0376.05049, DOI 10.1017/S0004972700007760]