New existence of homoclinic orbits for a second-order Hamiltonian system

被引:14
作者
Chen, Peng [1 ]
Tang, X. H. [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
Homoclinic solutions; Hamiltonian system; Variational methods; Weighted L(p) spaces;
D O I
10.1016/j.camwa.2011.04.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the Mountain Pass Theorem and the Symmetric Mountain Pass Theorem, we establish some existence criteria to guarantee that the second-order Hamiltonian system u(t) - a(t)vertical bar u(t)vertical bar(p-2)u(t) + del W (t, u(t)) = 0 has at least one or infinitely many homoclinic orbits, where t is an element of R. u is an element of R(N), a is an element of C(R, R) and W is an element of C(1) (R x R(N), R) are not periodic in t. Our conditions on the potential W(t, x) are rather relaxed. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 25 条
[1]   Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
APPLIED MATHEMATICS LETTERS, 2003, 16 (05) :639-642
[2]  
[Anonymous], 1986, MINIMAX METHODS CRIT
[3]  
Bartolo P, 1983, NONLINEAR ANAL, V7, P241
[4]  
Benci Vieri, 1979, Ann. Mat. Pura Appl., V121, P319
[5]   Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) :157-172
[6]  
Coti-Zelati V, 1991, J AM MATH SOC, V4, P693
[7]  
COTIZELATI V, 1990, MATH ANN, V288, P133
[8]  
Ding Y., 1993, DYNAM SYST APPL, V2, P131
[10]  
Fei G.H., 1996, ANN MATH B, V4, P403