On productively Lindelof spaces

被引:17
作者
Tall, Franklin D. [1 ]
Tsaban, Boaz [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
基金
加拿大自然科学与工程研究理事会;
关键词
Productively Lindelof; Powerfully Lindelof; Elementary submodel; Countably closed forcing; Sequential; Alster; Menger; Hurewicz; Analytic;
D O I
10.1016/j.topol.2011.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The class of spaces such that their product with every Lindelof space is Lindelof is not well-understood. We prove a number of new results concerning such productively Lindelof spaces with some extra property, mainly assuming the Continuum Hypothesis. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1239 / 1248
页数:10
相关论文
共 34 条
[1]  
Alas O., HOUSTON J M IN PRESS
[3]   ON THE CLASS OF ALL SPACES OF WEIGHT NOT GREATER THAN OMEGA-1 WHOSE CARTESIAN PRODUCT WITH EVERY LINDELOF SPACE IS LINDELOF [J].
ALSTER, K .
FUNDAMENTA MATHEMATICAE, 1988, 129 (02) :133-140
[4]  
[Anonymous], DISCOVERING MODERN S
[5]  
[Anonymous], 1965, T MOSCOW MATH SOC
[6]  
[Anonymous], 1986, Soviet Mathematics Doklady
[7]  
[Anonymous], TOPOLOGY AP IN PRESS
[8]  
Arhangel'skii A.V., 1963, DOKL AKAD NAUK SSSR, P751
[9]   Projective σ-compactness, ω1-caliber, and Cp-spaces [J].
Arhangel'skii, AV .
TOPOLOGY AND ITS APPLICATIONS, 2000, 104 (1-3) :13-26
[10]  
Aurichi LF, 2010, TOPOL P, V36, P107