Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging

被引:299
作者
Gao, Changyong [1 ]
Wang, Yong [2 ,3 ]
Ye, Zihan [2 ,3 ]
Lin, Zhihua [1 ]
Ma, Xing [2 ,3 ]
He, Qiang [1 ]
机构
[1] Harbin Inst Technol, Key Lab Microsyst & Microstruct Mfg, 92 West Dazhi St, Harbin 150080, Peoples R China
[2] Harbin Inst Technol Shenzhen, State Key Lab Adv Welding & Joining Shenzhen, Shenzhen 518055, Peoples R China
[3] Shenzhen Bay Lab, 9 Duxue Rd, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
active targeting; biological barriers; in vivo imaging; micro-; nanomotors; self-propulsion; BLOOD-BRAIN-BARRIER; QUANTUM DOTS; JANUS-MICROMOTOR; CATALYTIC NANOMOTORS; AUTONOMOUS MOVEMENT; DRUG-DELIVERY; CELL; PROPULSION; BACTERIA; MICRO/NANOMOTORS;
D O I
10.1002/adma.202000512
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-propelled micro- and nanomotors (MNMs) have shown great potential for applications in the biomedical field, such as active targeted delivery, detoxification, minimally invasive diagnostics, and nanosurgery, owing to their tiny size, autonomous motion, and navigation capacities. To enter the clinic, biomedical MNMs request the biodegradability of their manufacturing materials, the biocompatibility of chemical fuels or externally physical fields, the capability of overcoming various biological barriers (e.g., biofouling, blood flow, blood-brain barrier, cell membrane), and the in vivo visual positioning for autonomous navigation. Herein, the recent advances of synthetic MNMs in overcoming biological barriers and in vivo motion-tracking imaging techniques are highlighted. The challenges and future research priorities are also addressed. With continued attention and innovation, it is believed that, in the future, biomedical MNMs will pave the way to improve the targeted drug delivery efficiency.
引用
收藏
页数:19
相关论文
共 170 条
[1]   Artificial Swimmers Propelled by Acoustically Activated Flagella [J].
Ahmed, Daniel ;
Baasch, Thierry ;
Jang, Bumjin ;
Pane, Salvador ;
Dual, Juerg ;
Nelson, Bradley J. .
NANO LETTERS, 2016, 16 (08) :4968-4974
[2]   Spatial and temporal dynamics of the endothelium [J].
Aird, WC .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2005, 3 (07) :1392-1406
[3]   Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action [J].
Ariga, Katsuhiko ;
Li, Junbai ;
Fei, Jinbo ;
Ji, Qingmin ;
Hill, Jonathan P. .
ADVANCED MATERIALS, 2016, 28 (06) :1251-1286
[4]   The blood-brain barrier and blood-tumour barrier in brain tumours and metastases [J].
Arvanitis, Costas D. ;
Ferraro, Gino B. ;
Jain, Rakesh K. .
NATURE REVIEWS CANCER, 2020, 20 (01) :26-41
[5]   From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery [J].
Banks, William A. .
NATURE REVIEWS DRUG DISCOVERY, 2016, 15 (04) :275-+
[6]   zSelf-propelled particles that transport cargo through flowing blood and halt hemorrhage [J].
Baylis, James R. ;
Yeon, Ju Hun ;
Thomson, Max H. ;
Kazerooni, Amir ;
Wang, Xu ;
St John, Alex E. ;
Lim, Esther B. ;
Chien, Diana ;
Lee, Anna ;
Zhang, Jesse Q. ;
Piret, James M. ;
Machan, Lindsay S. ;
Burke, Thomas F. ;
White, Nathan J. ;
Kastrup, Christian J. .
SCIENCE ADVANCES, 2015, 1 (09)
[7]   Supercapacitors in Motion: Autonomous Microswimmers for Natural-Resource Recovery [J].
Beladi-Mousavi, Seyyed Mohsen ;
Khezri, Bahareh ;
Matejkova, Stanislava ;
Sofer, Zdenek ;
Pumera, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (38) :13340-13344
[8]   Visualizing Implanted Tumors in Mice with Magnetic Resonance Imaging Using Magnetotactic Bacteria [J].
Benoit, Michael R. ;
Mayer, Dirk ;
Barak, Yoram ;
Chen, Ian Y. ;
Hu, Wei ;
Cheng, Zhen ;
Wang, Shan X. ;
Spielman, Daniel M. ;
Gambhir, Sanjiv S. ;
Matin, A. .
CLINICAL CANCER RESEARCH, 2009, 15 (16) :5170-5177
[9]   Principles of nanoparticle design for overcoming biological barriers to drug delivery [J].
Blanco, Elvin ;
Shen, Haifa ;
Ferrari, Mauro .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :941-951
[10]  
Carovac Aladin, 2011, Acta Inform Med, V19, P168, DOI 10.5455/aim.2011.19.168-171