Stabilizing receding horizon control of sampled-data nonlinear systems via their approximate discrete-time models

被引:0
作者
Elaiw, AM [1 ]
Gyurkovics, E [1 ]
机构
[1] Budapest Univ Technol & Econ, Sch Math, H-1521 Budapest, Hungary
来源
CONTROL APPLICATIONS OF OPTIMISATION 2003 | 2003年
关键词
predictive control; feedback stabilization; sampled-data systems; optimal control; numerical methods;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Results on stabilizing receding horizon control of sampled-data nonlinear systems via their approximate discrete-time models are presented. The proposed receding horizon control is based on the solution of Bolza-type optimal control problems for the parametrized family of approximate discrete-time models. The sampling period is considered to be fixed, and the discretization parameter is allowed to vary. Sufficient conditions are established which guarantee that the controller that renders the origin to be asymptotically stable for the approximate model also stabilizes the exact discrete-time model for sufficiently small discretization parameters. Copyright (C) 2003 IFAC.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 17 条
[1]  
Allgower F., 1999, Advances in Control. Highlights of ECC'99, P391
[2]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[3]   Model predictive control of nonlinear systems: Computational burden and stability [J].
Chen, WH ;
Ballance, DJ ;
O'Reilly, J .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2000, 147 (04) :387-394
[4]   Stabilizing receding-horizon control of nonlinear time-varying systems [J].
De Nicolao, G ;
Magni, L ;
Scattolini, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (07) :1030-1036
[5]   A general framework to design stabilizing nonlinear model predictive controllers [J].
Fontes, FACC .
SYSTEMS & CONTROL LETTERS, 2001, 42 (02) :127-143
[6]  
GRUNE L, 2002, IN PRESS SIAM J CONT
[7]   Receding horizon control via Bolza-type optimization [J].
Gyurkovics, É .
SYSTEMS & CONTROL LETTERS, 1998, 35 (03) :195-200
[8]  
GYURKOVICS E, 1996, J MATH SYSTEMS ESTIM, V6, P1
[9]   Toward infinite-horizon optimality in nonlinear model predictive control [J].
Hu, B ;
Linnemann, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (04) :679-682
[10]   Asymptotic properties of receding horizon optimal control problems [J].
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (05) :1585-1610