Hermitian operators and isometries on algebras of matrix-valued Lipschitz maps

被引:3
作者
Oi, Shiho [1 ]
机构
[1] Niigata Prefectural Hakkai High Sch, Niigata 9496681, Japan
关键词
Hermitian operators; isometries; Lipschitz algebras; matrix algebras; BANACH-ALGEBRAS; HOMOMORPHISMS; SEMISIMPLE;
D O I
10.1080/03081087.2018.1530723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with hermitian operators and surjective linear isometries, between spaces of Lipschitz maps, defined on a compact metric space, with values in a finite dimensional vector space. These spaces are endowed with the sum norm. The first main result formulates that hermitian operators are composition operators (Theorem 2.2) and the second one (Theorem 3.3) gives a characterization for the surjective unital linear isometries between Banach algebras of Lipschitz maps with values in M-n(C).
引用
收藏
页码:1096 / 1112
页数:17
相关论文
共 12 条
[1]   HERMITIAN OPERATORS ON BANACH ALGEBRAS OF LIPSCHITZ FUNCTIONS [J].
Botelho, Fernanda ;
Jamison, James ;
Jimenez-Vargas, A. ;
Villegas-Vallecillos, Moises .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) :3469-3481
[2]  
Botelho F, 2011, CONTEMP MATH, V547, P73
[3]  
Fleming R. J., 2003, CHAPMAN HALL CRC MON, V129
[4]   HERMITIAN OPERATORS ON C(X,E) AND THE BANACH-STONE THEOREM [J].
FLEMING, RJ ;
JAMISON, JE .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (01) :77-84
[5]  
Hatori O, 2018, ACTA SCI MATH, V84, P151, DOI 10.14232/actasm-017-558-6
[6]   ISOMETRIES BETWEEN FUNCTION-SPACES [J].
JAROSZ, K ;
PATHAK, VD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 305 (01) :193-206
[8]  
Lumer G., 1963, Ann. Inst. Fourier (Grenoble), V13, P99
[9]  
Lumer G., 1961, T AM MATH SOC, V100, P26
[10]   LINEAR ISOMETRIES OF SOME FUNCTION SPACES [J].
RAO, NV ;
ROY, AK .
PACIFIC JOURNAL OF MATHEMATICS, 1971, 38 (01) :177-&