Elegant Ince-Gaussian beams in a quadratic-index medium

被引:13
作者
Bai Zhi-Yong [1 ]
Deng Dong-Mei [1 ]
Guo Qi [1 ]
机构
[1] S China Normal Univ, Key Lab Photon Informat Technol, Guangdong Higher Educ Inst, Guangzhou 510631, Guangdong, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
elegant Ince-Gaussian beams; complex variables; quadratic-index media; elliptic coordinates; COMPLEX ARGUMENT; PROPAGATION; SOLITONS;
D O I
10.1088/1674-1056/20/9/094202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Elegant Ince-Gaussian beams, which are the exact solutions of the paraxial wave equation in a quadratic-index medium, are derived in elliptical coordinates. These kinds of beams are the alternative form of standard Ince-Gaussian beams and they display better symmetry between the Ince-polynomials and the Gaussian function in mathematics. The transverse intensity distribution and the phase of the elegant Ince-Gaussian beams are discussed.
引用
收藏
页数:6
相关论文
共 19 条
[1]  
Arscott FM, 1964, Periodic Differential Equations
[2]   Elegant Ince-Gaussian beams [J].
Bandres, MA .
OPTICS LETTERS, 2004, 29 (15) :1724-1726
[3]   Ince-Gaussian beams [J].
Bandres, MA ;
Gutiérrez-Vega, JC .
OPTICS LETTERS, 2004, 29 (02) :144-146
[4]   Elegant Hermite-Laguerre-Gaussian beams [J].
Deng, Dongmei ;
Guo, Qi .
OPTICS LETTERS, 2008, 33 (11) :1225-1227
[5]   Photonic switching and logic gating with strongly nonlocal spatial optical solitons [J].
Guo, Q ;
Zhang, XP ;
Hu, W ;
Shou, Q .
ACTA PHYSICA SINICA, 2006, 55 (04) :1832-1839
[6]   Large phase shift of nonlocal optical spatial solitons [J].
Guo, Q ;
Luo, B ;
Yi, FH ;
Chi, S ;
Xie, YQ .
PHYSICAL REVIEW E, 2004, 69 (01) :8
[7]   Ince-Gaussian beams in a quadratic-index medium [J].
Gutiérrez-Vega, JC ;
Bandres, MA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (02) :306-309
[8]  
Haus HA, 1985, WAVES FIELDS OPTOELE, P139
[9]   Schrodinger formulation research for fight beam propagation in media of complex refractive index [J].
Liu, CY ;
Deng, DM ;
Hu, W ;
Guo, H .
ACTA PHYSICA SINICA, 2002, 51 (03) :524-526
[10]   Self-trapped modes in highly nonlocal nonlinear media [J].
Lopez-Aguayo, Servando ;
Gutierrez-Vega, Julio C. .
PHYSICAL REVIEW A, 2007, 76 (02)