On a singular integral equation with Weierstrass kernel

被引:0
作者
Khatiashvili, N. [1 ]
机构
[1] Tbilisi State Univ, I Vekua Inst Appl Math, GE-380086 Tbilisi, Georgia
关键词
singular integrals; boundary value problems; doubly quasi-periodic functions;
D O I
10.1080/17476930802187606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The singular integral equation 1/pi integral(L00) phi(t)zeta(t - t(0))dt = f(t(0)), t(0) is an element of L-00, where L-00 is the union of smooth arcs, zeta(t - t(0))is the Weierstrass 'zeta-function', f(t(0)) is given and phi(t) is an unknown function, is considered. It is proved that the solution of the equation in a Holder class always exists. The effective solutions are obtained by means of boundary value problems for sectionally holomorphic doubly quasi-periodic functions in latticed domains.
引用
收藏
页码:915 / 943
页数:29
相关论文
共 50 条
  • [41] A Smooth Solution of a Singular Fractional Differential Equation
    Laett, Kaido
    Pedas, Arvet
    Vainikko, Gennadi
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (02): : 127 - 146
  • [42] Symmetric positive solutions to a singular φ-Laplace equation
    Jebelean, Petru
    Precup, Radu
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (02): : 495 - 515
  • [43] Shifted Fractional-Order Jacobi Collocation Method for Solving Variable-Order Fractional Integro-Differential Equation with Weakly Singular Kernel
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Lopes, Antonio M.
    Hashim, Ishak
    Babatin, Mohammed M.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [44] A systematic approach for potentials on closely packed cells using the null-field boundary integral equation in conjunction with the degenerate kernel and eigenfunction expansion
    Lee, Ying-Te
    Kao, Jeng-Hong
    Chou, Yen-Ting
    Chen, Jeng-Tzong
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 140 : 98 - 112
  • [45] Fast integral equation methods for the Laplace-Beltrami equation on the sphere
    Kropinski, Mary Catherine A.
    Nigam, Nilima
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) : 577 - 596
  • [46] COMMUTATORS OF SINGULAR INTEGRAL OPERATORS WITH NON-SMOOTH KERNELS
    邓东皋
    颜立新
    [J]. ActaMathematicaScientia, 2005, (01) : 137 - 144
  • [47] SINGULAR INTEGRAL-OPERATORS ON C1 MANIFOLDS
    LEWIS, JE
    SELVAGGI, R
    SISTO, I
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) : 293 - 308
  • [48] Singular integral operators with rough kernels on Morrey type spaces
    Ho, Kwok-Pun
    [J]. STUDIA MATHEMATICA, 2019, 244 (03) : 217 - 243
  • [49] Commutators of singular integral operators with non-smooth kernels
    Deng, DG
    Yan, LX
    [J]. ACTA MATHEMATICA SCIENTIA, 2005, 25 (01) : 137 - 144
  • [50] Efficient Numerical Evaluation of Singular Integrals in Volume Integral Equations
    Muenger, Cedric
    Cools, Kristof
    [J]. IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2022, 7 : 168 - 175