Structural Transformation of Hexagonal (0001)BaTiO3 Ceramics to Tetragonal (111)BaTiO3 Ceramics

被引:23
作者
Watanabe, Takayuki [1 ]
Shimada, Mikio [1 ]
Aiba, Toshiaki [1 ]
Yabuta, Hisato [1 ]
Miura, Kaoru [1 ]
Oka, Kengo [2 ]
Azuma, Masaki [2 ]
Wada, Satoshi [3 ]
Kumada, Nobuhiro [4 ]
机构
[1] CANON Inc, Corp R&D Headquarters, Ota Ku, Tokyo 1468501, Japan
[2] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan
[3] Univ Yamanashi, Interdisciplinary Grad Sch Med & Engn, Kofu, Yamanashi 4008510, Japan
[4] Univ Yamanashi, Dept Res Interdisciplinary Grad Sch Med & Engn, Kofu, Yamanashi 4008511, Japan
关键词
BARIUM-TITANATE; BATIO3; NANOTWINS;
D O I
10.1143/JJAP.50.09ND01
中图分类号
O59 [应用物理学];
学科分类号
摘要
A ceramic slurry that contains a 6H-type Ba(Ti0.95Mn0.05)O-3 powder was casted into a plaster mold under 10 T magnetic field to form a green compact of (0001)-oriented Ba(Ti0.95Mn0.05)O-3. After sintering the green compact at 1300 degrees C in air, it was confirmed that the (0001)-oriented 6H-type perovskite structure transformed to a (111)-oriented 3C-type perovskite structure. The structural transformation was again examined using hexagonal BaTiO3 prepared by reducing pseudo-cubic BaTiO3 powder in H-2 atmosphere. In this case, the preferred (0001) orientation was not confirmed for the green compacts. After sintering the green compacts at 1300 degrees C in air, mixed crystal orientations of (100)/(001) and (111) were observed for the resultant tetragonal BaTiO3 ceramics. This (100)/(001) orientation was suppressed by annealing the hexagonal BaTiO3 powder at 1000 degrees C before slip-casting, leading to highly (111)-oriented ceramics. It was found that the green compacts of (0001)-oriented hexagonal BaTiO3 can transform into (111)-oriented tetragonal BaTiO3 ceramics, maintaining the macroscopic crystal orientations due to a similar atomic stacking along [0001] of 6H-type BaTiO3 and [111] of 3C-type BaTiO3. (C) 2011 The Japan Society of Applied Physics
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Fabrication of ⟨111⟩-oriented BaTiO3 ceramics by high magnetic field electrophoretic deposition using hexagonal-tetragonal co-existing BaTiO3 powder
    Mallik, Hari Shankar
    Fujii, Ichiro
    Khanal, Gopal Prasad
    Kim, Sangwook
    Ueno, Shintaro
    Suzuki, Tohru S.
    Wada, Satoshi
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2020, 128 (08) : 469 - 474
  • [3] Heat capacity of nanostructured BaTiO3 ceramics
    S. N. Kallaev
    Z. M. Omarov
    A. G. Bakmaev
    K. Abdulvakhidov
    Physics of the Solid State, 2013, 55 : 1095 - 1097
  • [4] Aging behaviours of CuO modified BaTiO3 ceramics
    Tan, Y. Q.
    Zhang, J. L.
    Wang, C. L.
    ADVANCES IN APPLIED CERAMICS, 2014, 113 (04) : 223 - 227
  • [5] Crystal structure of dense nanocrystalline BaTiO3 ceramics
    Department of Material Science and Engineering, Henan University of Technology, Zhengzhou 450007, China
    不详
    不详
    Gongneng Cailiao, 2007, 10 (1621-1623):
  • [6] Characterization and properties of BaTiO3/MgO nanocomposite ceramics
    Vittayakorn, W. C.
    Bunjong, D.
    Muanghlua, R.
    Vittayakorn, N.
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2011, 12 (05): : 493 - 495
  • [7] EXOELECTRON EMISSION STUDIES OF REDUCED BATIO3 CERAMICS
    RUDKOVSKII, VN
    RAYEVSKY, IP
    RABKIN, LM
    FERROELECTRICS, 1992, 131 (1-4) : 289 - 292
  • [8] X-ray and dielectric characterization of Co doped tetragonal BaTiO3 ceramics
    Bujakiewicz-Koronska, R.
    Vasylechko, L.
    Markiewicz, E.
    Nalecz, D. M.
    Kalvane, A.
    PHASE TRANSITIONS, 2017, 90 (01) : 78 - 85
  • [9] Investigation of the structural and microstructural properties of Gd3+-modified BaTiO3 ceramics
    Oliveira, M. A.
    Silva, M. C. O.
    M'peko, J. C.
    Hernandes, A. C.
    Mendez-Gonzalez, Y.
    Guerra, J. D. S.
    FERROELECTRICS, 2019, 545 (01) : 47 - 54
  • [10] (111) Twinned BaTiO3 microcrystallites
    Qin, Shubin
    Liu, Duo
    Zheng, Feifei
    Zuo, Zhiyuan
    Liu, Hong
    Xu, Xiangang
    CRYSTENGCOMM, 2010, 12 (10): : 3003 - 3007