Temperature Prediction in Electric Arc Furnace with Neural Network Tree

被引:0
作者
Kordos, Miroslaw [1 ]
Blachnik, Marcin [2 ]
Wieczorek, Tadeusz [2 ]
机构
[1] Univ Bielsko Biala, Dept Math & Comp Sci, Bielsko Biala 2, Willowa, Poland
[2] Silesian Tech Univ, Dept Management & Informat, Katowice, Poland
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT II | 2011年 / 6792卷
关键词
EAF; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a neural network tree regression system with dynamic optimization of input variable transformations and post-training optimization. The decision tree consists of MLP neural networks, which optimize the split points and at the leaf level predict final outputs. The system is designed for regression problems of big and complex datasets. It was applied to the problem of steel temperature prediction in the electric arc furnace in order to decrease the process duration at one of the steelworks.
引用
收藏
页码:71 / +
页数:2
相关论文
共 50 条
  • [21] Modeling of Radiative Heat Transfer in an Electric Arc Furnace
    Opitz, Florian
    Treffinger, Peter
    Woellenstein, Juergen
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2017, 48 (06): : 3301 - 3315
  • [23] MODELING OF POST-COMBUSTION IN AN ELECTRIC ARC FURNACE
    Tang, Guangwu
    Liu, Wenjie
    Silaen, Armin K.
    Zhou, Chenn Q.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017 VOL 8, 2018,
  • [24] Fractional-Order Model of Electric Arc Furnace
    Grabowski, Dariusz
    Jakubowska-Ciszek, Agnieszka
    Klimas, Maciej
    IEEE TRANSACTIONS ON POWER DELIVERY, 2023, 38 (06) : 3761 - 3770
  • [25] Mathematical Modeling of Postcombustion in an Electric Arc Furnace (EAF)
    Arzpeyma, Niloofar
    Ersson, Mikael
    Jonsson, Par G.
    METALS, 2019, 9 (05)
  • [26] OPTIMISATION OF METAL CHARGE MATERIAL FOR ELECTRIC ARC FURNACE
    Lis, T.
    METALURGIJA, 2011, 50 (04): : 219 - 222
  • [27] Electric arc furnace compensation using LaGrange minimization
    White, Leonard W.
    Battacharya, Subhashish
    2013 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2013, : 2253 - 2256
  • [28] Mathematical Modeling and Experimental Validation of an Electric Arc Furnace
    Logar, Vito
    Dovzan, Dejan
    Skrjanc, Igor
    ISIJ INTERNATIONAL, 2011, 51 (03) : 382 - 391
  • [29] Comprehensive Electric Arc Furnace Electric Energy Consumption Modeling: A Pilot Study
    Kovacic, Miha
    Stopar, Klemen
    Vertnik, Robert
    Sarler, Bozidar
    ENERGIES, 2019, 12 (11)
  • [30] Prediction of Titanium Module in Blast Furnace Based on Multilayer Perceptron and Elman Neural Network
    Barbasova, T. A.
    Lapteva, Y. V.
    2018 GLOBAL SMART INDUSTRY CONFERENCE (GLOSIC), 2018,