Dual bases in Temperley-Lieb algebras, quantum groups, and a question of Jones

被引:1
作者
Brannan, Michael [1 ]
Collins, Benoit [2 ]
机构
[1] Texas A&M Univ, Dept Math, Mailstop 3368, College Stn, TX 77843 USA
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 6068502, Japan
基金
日本学术振兴会; 加拿大自然科学与工程研究理事会;
关键词
Temperley-Lieb algebra; dual basis; Weingarten function; quantum group; subfactor; non-crossing partitions; MATRIX;
D O I
10.4171/QT/118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a Laurent series expansion for the structure coefficients appearing in the dual basis corresponding to the Kauffman diagram basis of the Temperley Lieb algebra TLk(d), converging for all complex loop parameters d with |d| > 2 cos (pi/k+1). In particular, this yields a new formula for the structure coefficients of the Jones Wenzl projection in TLk(d). The coefficients appearing in each Laurent expansion are shown to have a natural combinatorial interpretation in terms of a certain graph structure we place on non -crossing pairings, and these coefficients turn out to have the remarkable property that they either always positive integers or always negative integers. As an application, we answer affirmatively a question of Vaughan Jones, asking whether every Temperley Lieb diagram appears with non -zero coefficient in the expansion of each dual basis element in TLk(d), when d is an element of R\[ - 2 cos (pi/k+1), 2 cos (pi/k+1)]. Specializing to Jones Wenzl projections, this result gives a new proof of a result of Ocneanu [27], stating that every Temperley Lieb diagram appears with non -zero coefficient in a Jones Wenzl projection. Our methods establish a connection with the Weingarten calculus on free quantum groups, and yield as a byproduct improved asymptotics for the free orthogonal Weingarten function.
引用
收藏
页码:715 / 748
页数:34
相关论文
共 37 条
[1]  
Abramsky S., 2008, Chapman & Hall/CRC Appl. Math. Nonlinear Sci. Ser., P515
[2]  
[Anonymous], 2016, Rev. Colombiana Mat.
[3]  
Banica T, 1996, CR ACAD SCI I-MATH, V322, P241
[4]  
Banica T, 1997, COMMUN MATH PHYS, V190, P143, DOI 10.1007/s002200050237
[5]   Integration over compact quantum groups [J].
Banica, Teodor ;
Collins, Benoit .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2007, 43 (02) :277-302
[6]   DE FINETTI THEOREMS FOR EASY QUANTUM GROUPS [J].
Banica, Teodor ;
Curran, Stephen ;
Speicher, Roland .
ANNALS OF PROBABILITY, 2012, 40 (01) :401-435
[7]   Decomposition results for Gram matrix determinants [J].
Banica, Teodor ;
Curran, Stephen .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (11)
[8]   Liberation of orthogonal Lie groups [J].
Banica, Teodor ;
Speicher, Roland .
ADVANCES IN MATHEMATICS, 2009, 222 (04) :1461-1501
[9]   Spectral Analysis of the Free Orthogonal Matrix [J].
Banica, Teodor ;
Collins, Benoit ;
Zinn-Justin, Paul .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (17) :3286-3309
[10]   QUANTUM GROUPS AND GENERALIZED CIRCULAR ELEMENTS [J].
Brannan, Michael ;
Kirkpatrick, Kay .
PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (01) :35-61