A SIMPLE PROOF OF GLOBAL EXISTENCE FOR THE 1D PRESSURELESS GAS DYNAMICS EQUATIONS

被引:21
作者
Cavalletti, Fabio [1 ]
Sedjro, Marc [1 ]
Westdickenberg, Michael [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math Anal, D-52062 Aachen, Germany
关键词
pressureles gas dynamics; optimal transport; SCALAR CONSERVATION-LAWS; PARTICLE DYNAMICS; POISSON SYSTEMS; COEFFICIENTS; SPACE;
D O I
10.1137/130945296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sticky particle solutions to the one-dimensional pressureless gas dynamics equations can be constructed by a suitable metric projection onto the cone of monotone maps, as was shown in recent work by Natile and Savare. Their proof uses a discrete particle approximation and stability properties for first-order differential inclusions. Here we give a more direct proof that relies on a result by Haraux on the differentiability of metric projections. We apply the same method also to the one-dimensional Euler-Poisson system, obtaining a new proof for the global existence of weak solutions.
引用
收藏
页码:66 / 79
页数:14
相关论文
共 20 条
[1]  
Alberti G, 1999, MATH Z, V230, P259, DOI 10.1007/PL00004691
[2]  
Ambrosio L., 2005, Gradient Flows: in Metric Spaces and in the Space of Probability Measures
[3]  
[Anonymous], 1973, N HOLLAND MATH STUD
[4]  
BOUCHUT F, 1995, CR ACAD SCI I-MATH, V320, P1097
[5]  
Bouchut F, 1999, COMMUN PART DIFF EQ, V24, P2173
[6]   Sticky particle dynamics with interactions [J].
Brenier, Y. ;
Gangbo, W. ;
Savare, G. ;
Westdickenberg, M. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (05) :577-617
[7]   Sticky particles and scalar conservation laws [J].
Brenier, Y ;
Grenier, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2317-2328
[8]  
Folland GB, 1999, Real analysis: modern techniques and their applications, V40
[9]   Euler-Poisson Systems as Action-Minimizing Paths in the Wasserstein Space [J].
Gangbo, W. ;
Nguyen, T. ;
Tudorascu, A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 192 (03) :419-452
[10]  
Grenier E., 1995, ACAD SCI PARIS 1, V321, P171