Numerical Simulation of Delft-Jet-in-Hot-Coflow (DJHC) Flames Using the Eddy Dissipation Concept Model for Turbulence-Chemistry Interaction

被引:176
作者
De, Ashoke [1 ]
Oldenhof, Ernst [1 ]
Sathiah, Pratap [2 ]
Roekaerts, Dirk [1 ]
机构
[1] Delft Univ Technol, Dept Multiscale Phys, NL-2622 CJ Delft, Netherlands
[2] Nucl Res & Consultancy Grp NRG, NL-1755 ZG Petten, Netherlands
关键词
MILD combustion; Jet-in-hot-coflow (JHC); Eddy-Dissipation-Concept (EDC); Turbulence; MILD COMBUSTION; DIFFUSION FLAME; TEMPERATURE; MECHANISMS;
D O I
10.1007/s10494-011-9337-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we report results of a numerical investigation of turbulent natural gas combustion for a jet in a coflow of lean combustion products in the Delft-Jet-in-Hot-Coflow (DJHC) burner which emulates MILD (Moderate and Intense Low Oxygen Dilution) combustion behavior. The focus is on assessing the performance of the Eddy Dissipation Concept (EDC) model in combination with two-equation turbulence models and chemical kinetic schemes for about 20 species (Correa mechanism and DRM19 mechanism) by comparing predictions with experimental measurements. We study two different flame conditions corresponding to two different oxygen levels (7.6% and 10.9% by mass) in the hot coflow, and for two jet Reynolds number (Re = 4,100 and Re = 8,800). The mean velocity and turbulent kinetic energy predicted by different turbulence models are in good agreement with data without exhibiting large differences among the model predictions. The realizable k-epsilon model exhibits better performance in the prediction of entrainment. The EDC combustion model predicts too early ignition leading to a peak in the radial mean temperature profile at too low axial distance. However the model correctly predicts the experimentally observed decreasing trend of lift-off height with jet Reynolds number. A detailed analysis of the mean reaction rate of the EDC model is made and as possible cause for the deviations between model predictions and experiments a low turbulent Reynolds number effect is identified. Using modified EDC model constants prediction of too early ignition can be avoided. The results are weakly sensitive to the sub-model for laminar viscosity and laminar diffusion fluxes.
引用
收藏
页码:537 / 567
页数:31
相关论文
共 38 条
[1]  
[Anonymous], ANS FLUENT 12 0 US G
[2]   ON REDUCED MECHANISMS FOR METHANE AIR COMBUSTION IN NONPREMIXED FLAMES [J].
BILGER, RW ;
STARNER, SH ;
KEE, RJ .
COMBUSTION AND FLAME, 1990, 80 (02) :135-149
[3]   Mild combustion [J].
Cavaliere, A ;
de Joannon, M .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2004, 30 (04) :329-366
[4]  
Cho E.S., 2010, P 8 INT S HIGH TEMP, P229
[5]   Modeling turbulent reacting jets issuing into a hot and diluted coflow [J].
Christo, E .
COMBUSTION AND FLAME, 2005, 142 (1-2) :117-129
[6]  
Christo F, 2004, P 15 AUSTR FLUID MEC, P13
[7]   Numerical simulation of a mild combustion burner [J].
Coelho, PJ ;
Peters, N .
COMBUSTION AND FLAME, 2001, 124 (03) :503-518
[8]   TURBULENCE-CHEMISTRY INTERACTIONS IN THE INTERMEDIATE REGIME OF PREMIXED COMBUSTION [J].
CORREA, SM .
COMBUSTION AND FLAME, 1993, 93 (1-2) :41-60
[9]   Effect of fuel mixture on moderate and intense low oxygen dilution combustion [J].
Dally, BB ;
Riesmeier, E ;
Peters, N .
COMBUSTION AND FLAME, 2004, 137 (04) :418-431
[10]   Structure of turbulent non-premixed jet flames in a diluted hot coflow [J].
Dally, BB ;
Karpetis, AN ;
Barlow, RS .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2002, 29 :1147-1154