Efficient Training Over Long Short-Term Memory Networks for Wind Speed Forecasting

被引:2
|
作者
Lopez, Erick [1 ]
Valle, Carlos [1 ]
Allende, Hector [1 ,3 ]
Gil, Esteban [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Informat, Valparaiso, Chile
[2] Univ Tecn Federico Santa Maria, Dept Ingn Elect, Valparaiso, Chile
[3] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile
关键词
Wind speed forecasting; Recurrent neural networks; Long Short-Term Memory; Multivariate time series; PREDICTION; TIME;
D O I
10.1007/978-3-319-52277-7_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to its variability, the development of wind power entails several difficulties, including wind speed forecasting. The Long Short-Term Memory (LSTM) is a particular type of recurrent network that can be used to work with sequential data, and previous works showed good empirical results. However, its training algorithm is expensive in terms of computation time. This paper proposes an efficient algorithm to train LSTM, decreasing computation time while maintaining good performance. The proposal is organized in two stages: (i) first to improve the weights output layer; (ii) next, update all weights using the original algorithm with one epoch. We used the proposed method to forecast wind speeds from 1 to 24 h ahead. Results demonstrated that our algorithm outperforms the original training algorithm, improving the efficiency and achieving better or comparable performance in terms of MAPE, MAE and RMSE.
引用
收藏
页码:409 / 416
页数:8
相关论文
共 50 条
  • [21] Short Term Prediction of Wind Speed Based on Long-Short Term Memory Networks
    Salman, Umar T.
    Rehman, Shafiqur
    Alawode, Basit
    Alhems, Luai M.
    FME TRANSACTIONS, 2021, 49 (03): : 643 - 652
  • [22] Short-Term Wind Speed Forecasting by Spectral Analysis
    Akcay, Huseyin
    Filik, Tansu
    2018 29TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2018,
  • [23] Short-term Wind Speed Forecasting with ARIMA Model
    Radziukynas, Virginijus
    Klementavicius, Arturas
    2014 55TH INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2014, : 145 - 149
  • [24] A Hybrid Approach for Short-Term Forecasting of Wind Speed
    Tatinati, Sivanagaraja
    Veluvolu, Kalyana C.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [25] A Hybrid Method for Short-Term Wind Speed Forecasting
    Zhang, Jinliang
    Wei, YiMing
    Tan, Zhong-fu
    Wang, Ke
    Tian, Wei
    SUSTAINABILITY, 2017, 9 (04):
  • [26] A hybrid system for short-term wind speed forecasting
    He, Qingqing
    Wang, Jianzhou
    Lu, Haiyan
    APPLIED ENERGY, 2018, 226 : 756 - 771
  • [27] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    ENERGIES, 2019, 12 (20)
  • [28] Evolutionary product unit neural networks for short-term wind speed forecasting in wind farms
    Hervas-Martinez, C.
    Salcedo-Sanz, S.
    Gutierrez, P. A.
    Ortiz-Garcia, E. G.
    Prieto, L.
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (05): : 993 - 1005
  • [29] Evolutionary product unit neural networks for short-term wind speed forecasting in wind farms
    C. Hervás-Martínez
    S. Salcedo-Sanz
    P. A. Gutiérrez
    E. G. Ortiz-García
    L. Prieto
    Neural Computing and Applications, 2012, 21 : 993 - 1005
  • [30] A Fuzzy Seasonal Long Short-Term Memory Network for Wind Power Forecasting
    Liao, Chin-Wen
    Wang, I-Chi
    Lin, Kuo-Ping
    Lin, Yu-Ju
    MATHEMATICS, 2021, 9 (11)