Efficient Training Over Long Short-Term Memory Networks for Wind Speed Forecasting

被引:2
|
作者
Lopez, Erick [1 ]
Valle, Carlos [1 ]
Allende, Hector [1 ,3 ]
Gil, Esteban [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Informat, Valparaiso, Chile
[2] Univ Tecn Federico Santa Maria, Dept Ingn Elect, Valparaiso, Chile
[3] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile
关键词
Wind speed forecasting; Recurrent neural networks; Long Short-Term Memory; Multivariate time series; PREDICTION; TIME;
D O I
10.1007/978-3-319-52277-7_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to its variability, the development of wind power entails several difficulties, including wind speed forecasting. The Long Short-Term Memory (LSTM) is a particular type of recurrent network that can be used to work with sequential data, and previous works showed good empirical results. However, its training algorithm is expensive in terms of computation time. This paper proposes an efficient algorithm to train LSTM, decreasing computation time while maintaining good performance. The proposal is organized in two stages: (i) first to improve the weights output layer; (ii) next, update all weights using the original algorithm with one epoch. We used the proposed method to forecast wind speeds from 1 to 24 h ahead. Results demonstrated that our algorithm outperforms the original training algorithm, improving the efficiency and achieving better or comparable performance in terms of MAPE, MAE and RMSE.
引用
收藏
页码:409 / 416
页数:8
相关论文
共 50 条
  • [1] Evolving long short-term memory neural network for wind speed forecasting
    Huang, Cong
    Karimi, Hamid Reza
    Mei, Peng
    Yang, Daoguang
    Shi, Quan
    INFORMATION SCIENCES, 2023, 632 : 390 - 410
  • [2] Deep convolutional long short-term memory for forecasting wind speed and direction
    Puspita Sari A.
    Suzuki H.
    Kitajima T.
    Yasuno T.
    Arman Prasetya D.
    Rabi' A.
    SICE Journal of Control, Measurement, and System Integration, 2021, 14 (02) : 30 - 38
  • [3] Short-term wind speed forecasting based on long short-term memory and improved BP neural network
    Chen, Gonggui
    Tang, Bangrui
    Zeng, Xianjun
    Zhou, Ping
    Kang, Peng
    Long, Hongyu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [4] Wind Speed Forecasting Using Recurrent Neural Networks and Long Short Term Memory
    Ningsih, Fitriana R.
    Djamal, Esmeralda C.
    Najmurrakhman, Asep
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2019, : 137 - 141
  • [5] A Short-Term Wind Speed Forecasting Model Based on a Multi-Variable Long Short-Term Memory Network
    Xie, Anqi
    Yang, Hao
    Chen, Jing
    Sheng, Li
    Zhang, Qian
    ATMOSPHERE, 2021, 12 (05)
  • [6] Short-Term Probabilistic Forecasting Method for Wind Speed Combining Long Short-Term Memory and Gaussian Mixture Model
    He, Xuhui
    Lei, Zhihao
    Jing, Haiquan
    Zhong, Rendong
    ATMOSPHERE, 2023, 14 (04)
  • [7] Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory
    Lopez, Erick
    Valle, Carlos
    Allende, Hector
    Gil, Esteban
    Madsen, Henrik
    ENERGIES, 2018, 11 (03)
  • [8] Long Short Term Memory Networks for Short-Term Electric Load Forecasting
    Narayan, Apurva
    Hipel, Keith W.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2573 - 2578
  • [9] An Integrated CEEMDAN to Optimize Deep Long Short-Term Memory Model for Wind Speed Forecasting
    He, Yingying
    Zhang, Likai
    Guan, Tengda
    Zhang, Zheyu
    ENERGIES, 2024, 17 (18)
  • [10] Wind Speed Prediction and Visualization Using Long Short-Term Memory Networks (LSTM)
    Ehsan, Amimul
    Shahirinia, Amir
    Zhang, Nian
    Oladunni, Timothy
    2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, : 234 - 240