Predicting protein-peptide binding sites with a deep convolutional neural network

被引:28
作者
Wardah, Wafaa [1 ]
Dehzangi, Abdollah [2 ]
Taherzadeh, Ghazaleh [3 ]
Rashid, Mahmood A. [4 ,5 ]
Khan, M. G. M. [1 ]
Tsunoda, Tatsuhiko [6 ,7 ,8 ,9 ]
Sharma, Alok [5 ,7 ,8 ,10 ]
机构
[1] Univ South Pacific, Fac Sci, Sch Comp Informat & Math Sci, Suva, Fiji
[2] Morgan State Univ, Dept Comp Sci, Baltimore, MD 21239 USA
[3] Univ Maryland, Inst Biosci & Biotechnol Res, College Pk, MD USA
[4] Victoria Univ, Inst Sustainable Ind & Liveable Cities, Melbourne, Vic, Australia
[5] Griffith Univ, Inst Integrated & Intelligent Syst, Nathan, Qld, Australia
[6] Tokyo Med & Dent Univ, Med Res Inst, Dept Med Sci Math, Tokyo, Japan
[7] RIKEN, Lab Med Sci Math, Ctr Integrat Med Sci, Yokohama, Kanagawa, Japan
[8] JST, CREST, Tokyo 1138510, Japan
[9] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Lab Med Sci Math, Tokyo, Japan
[10] Univ South Pacific, Sch Engn & Phys, Suva, Fiji
关键词
Protein-peptide binding; Artificial intelligence; Deep learning; Convolutional neural network; Protein sequence; AMINO-ACID; SOLVENT; DATABASE; MODELS; DNA;
D O I
10.1016/j.jtbi.2020.110278
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation: Interactions between proteins and peptides influence biological functions. Predicting such bio-molecular interactions can lead to faster disease prevention and help in drug discovery. Experimental methods for determining protein-peptide binding sites are costly and time-consuming. Therefore, computational methods have become prevalent. However, existing models show extremely low detection rates of actual peptide binding sites in proteins. To address this problem, we employed a two-stage technique first, we extracted the relevant features from protein sequences and transformed them into images applying a novel method and then, we applied a convolutional neural network to identify the peptide binding sites in proteins. Results: We found that our approach achieves 67% sensitivity or recall (true positive rate) surpassing existing methods by over 35%. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 48 条
  • [21] Characterization of Domain-Peptide Interaction Interface
    Hou, Tingjun
    Xu, Zheng
    Zhang, Wei
    McLaughlin, William A.
    Case, David A.
    Xu, Yang
    Wang, Wei
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2009, 8 (04) : 639 - 649
  • [22] Wet and dry interfaces: the role of solvent in protein-protein and protein-DNA recognition
    Janin, J
    [J]. STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (12): : R277 - R279
  • [23] DeepSite: protein-binding site predictor using 3D-convolutional neural networks
    Jimenez, J.
    Doerr, S.
    Martinez-Rosell, G.
    Rose, A. S.
    De Fabritiis, G.
    [J]. BIOINFORMATICS, 2017, 33 (19) : 3036 - 3042
  • [24] AAindex: Amino Acid Index Database
    Kawashima, S
    Ogata, H
    Kanehisa, M
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (01) : 368 - 369
  • [25] Kingma DP, 2014, ADV NEUR IN, V27
  • [26] Semi-Supervised Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data
    Kundu, Kousik
    Costa, Fabrizio
    Huber, Michael
    Reth, Michael
    Backofen, Rolf
    [J]. PLOS ONE, 2013, 8 (05):
  • [27] Protein-protein interaction networks: probing disease mechanisms using model systems
    Kuzmanov, Uros
    Emili, Andrew
    [J]. GENOME MEDICINE, 2013, 5
  • [28] Characterization of local geometry of protein surfaces with the visibility criterion
    Li, Bin
    Turuvekere, Srinivasan
    Agrawal, Manish
    La, David
    Ramani, Karthik
    Kihara, Daisuke
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 71 (02) : 670 - 683
  • [29] Protein binding site prediction using an empirical scoring function
    Liang, Shide
    Zhang, Chi
    Liu, Song
    Zhou, Yaoqi
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 (13) : 3698 - 3707
  • [30] Applying the Naive Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites
    Murakami, Yoichi
    Mizuguchi, Kenji
    [J]. BIOINFORMATICS, 2010, 26 (15) : 1841 - 1848