Existence and multiplicity of solutions for Klein-Gordon-Maxwell systems with sign-changing potentials

被引:2
作者
Wei, Chongqing [1 ]
Li, Anran [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Maxwell system; Symmetric Mountain Pass theorem; Mountain Pass theorem; Variational methods; Nontrivial solutions; GROUND-STATE SOLUTIONS; SOLITARY WAVES; EQUATIONS; NONEXISTENCE;
D O I
10.1186/s13662-019-2020-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following nonlinear Klein-Gordon-Maxwell system: {-Delta u+V(x)u-(2 omega+phi)phi u=f(x,u)+h(x)vertical bar u vertical bar(q-2)u, x is an element of R-3, Df=(omega+phi)u(2), x is an element of R-3, (P-lambda) where and are positive constants, V is a continuous function with negative infimum, q is an element of (1,2), h is an element of 2/L2-q(R-3) is a positive potential function. Under the classic Ambrosetti-Rabinowitz condition, nontrivial solutions are obtained via the symmetric mountain pass theorem and the mountain pass theorem. In our paper, the nonlinearity F can also change sign and does not need to satisfy any 4-superlinear condition. We extend and improve some existing results to some extent.
引用
收藏
页数:11
相关论文
共 23 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system [J].
Azzollini, A. ;
Pisani, L. ;
Pomponio, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :449-463
[3]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[4]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[5]  
Bartsch T, 2005, HBK DIFF EQUAT STATI, V2, P1, DOI 10.1016/S1874-5733(05)80009-9
[6]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[7]   The nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :6065-6072
[8]   Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials [J].
Carriao, Paulo C. ;
Cunha, Patricia L. ;
Miyagaki, Olimpio H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (10) :4068-4078
[9]   EXISTENCE RESULTS FOR THE KLEIN-GORDON-MAXWELL EQUATIONS IN HIGHER DIMENSIONS WITH CRITICAL EXPONENTS [J].
Carriao, Paulo C. ;
Cunha, Patricia L. ;
Miyagaki, Olimpio H. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (02) :709-718
[10]   Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with of Maxwell's equations [J].
Cassani, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (7-8) :733-747