Characterization of Roman domination critical unicyclic graphs

被引:0
作者
Hansberg, A. [1 ]
Rad, N. Jafari [2 ]
Volkmann, L. [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
[2] Shahrood Univ Technol, Dept Math, Shahrood, Iran
关键词
Domination; Roman domination; Roman domination critical graph; unicyclic graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Roman dominating function on a graph G is a function f : V(G) -> {0, 1, 2} satisfying the condition that every vertex u of G for which f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function is the value f(V(G)) = Sigma(u is an element of V(G)) f(u). The Roman domination number, gamma(R)(G), of G is the minimum weight of a Roman dominating function on G. A graph G is said to be Roman domination vertex critical or just gamma(R)-vertex critical, if gamma(R)(G - v) < gamma(R)(G) for any vertex v is an element of V(G). Similarly, G is Roman domination edge critical or just gamma(R)-edge critical, if gamma(R)(G + e) < gamma(R)(G) for any edge e is not an element of E(G). In this paper, we characterize gamma(R)-vertex critical connected unicyclic graphs as well gamma(R)-edge critical connected unicyclic graphs.
引用
收藏
页码:129 / 146
页数:18
相关论文
共 50 条
  • [42] On Roman domination stability in some simple graphs
    Amraee, Mehdi
    Maghasedi, Mohammad
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 682 - 686
  • [43] Upper bounds on Roman domination numbers of graphs
    Liu, Chun-Hung
    Chang, Gerard Jennhwa
    DISCRETE MATHEMATICS, 2012, 312 (07) : 1386 - 1391
  • [44] ROMAN DOMINATION ON 2-CONNECTED GRAPHS
    Liu, Chun-Hung
    Chang, Gerard J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (01) : 193 - 205
  • [45] Graphs with Large Hop Roman Domination Number
    Shabani, E.
    Rad, N. Jafari
    Poureidi, A.
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2019, 27 (01) : 3 - 22
  • [46] Further Results on the Total Roman Domination in Graphs
    Cabrera Martinez, Abel
    Cabrera Garcia, Suitberto
    Carrion Garcia, Andres
    MATHEMATICS, 2020, 8 (03)
  • [47] Roman [1,2]-domination of graphs
    Hao, Guoliang
    Chen, Xiaodan
    Sheikholeslami, Seyed Mahmoud
    Jiang, Haining
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 468
  • [48] Algorithmic results on double Roman domination in graphs
    S. Banerjee
    Michael A. Henning
    D. Pradhan
    Journal of Combinatorial Optimization, 2020, 39 : 90 - 114
  • [49] Roman {3}-domination in graphs: Complexity and algorithms
    Chaudhary, Juhi
    Pradhan, Dinabandhu
    DISCRETE APPLIED MATHEMATICS, 2024, 354 : 301 - 325
  • [50] Algorithmic results on double Roman domination in graphs
    Banerjee, S.
    Henning, Michael A.
    Pradhan, D.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) : 90 - 114