Characterization of Roman domination critical unicyclic graphs

被引:0
作者
Hansberg, A. [1 ]
Rad, N. Jafari [2 ]
Volkmann, L. [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
[2] Shahrood Univ Technol, Dept Math, Shahrood, Iran
关键词
Domination; Roman domination; Roman domination critical graph; unicyclic graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Roman dominating function on a graph G is a function f : V(G) -> {0, 1, 2} satisfying the condition that every vertex u of G for which f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function is the value f(V(G)) = Sigma(u is an element of V(G)) f(u). The Roman domination number, gamma(R)(G), of G is the minimum weight of a Roman dominating function on G. A graph G is said to be Roman domination vertex critical or just gamma(R)-vertex critical, if gamma(R)(G - v) < gamma(R)(G) for any vertex v is an element of V(G). Similarly, G is Roman domination edge critical or just gamma(R)-edge critical, if gamma(R)(G + e) < gamma(R)(G) for any edge e is not an element of E(G). In this paper, we characterize gamma(R)-vertex critical connected unicyclic graphs as well gamma(R)-edge critical connected unicyclic graphs.
引用
收藏
页码:129 / 146
页数:18
相关论文
共 50 条
  • [21] Co-Roman domination in graphs
    S ARUMUGAM
    KARAM EBADI
    MARTÍN MANRIQUE
    Proceedings - Mathematical Sciences, 2015, 125 : 1 - 10
  • [22] Total Roman {3}-domination in Graphs
    Shao, Zehui
    Mojdeh, Doost Ali
    Volkmann, Lutz
    SYMMETRY-BASEL, 2020, 12 (02):
  • [23] On the strong Roman domination number of graphs
    Alvarez-Ruiz, M. P.
    Mediavilla-Gradolph, T.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    Yero, I. G.
    DISCRETE APPLIED MATHEMATICS, 2017, 231 : 44 - 59
  • [24] Roman domination on strongly chordal graphs
    Chun-Hung Liu
    Gerard J. Chang
    Journal of Combinatorial Optimization, 2013, 26 : 608 - 619
  • [25] ROMAN k-DOMINATION IN GRAPHS
    Kaemmerling, Karsten
    Volkmann, Lutz
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (06) : 1309 - 1318
  • [26] Mixed double Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [27] Co-Roman domination in graphs
    Arumugam, S.
    Ebadi, Karam
    Manrique, Martin
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (01): : 1 - 10
  • [28] Roman domination on strongly chordal graphs
    Liu, Chun-Hung
    Chang, Gerard J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (03) : 608 - 619
  • [29] The 2-domination and Roman domination numbers of grid graphs
    Rao, Michael
    Talon, Alexandre
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (01)
  • [30] Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
    Cabrera Martinez, A.
    Garcia-Gomez, C.
    Rodriguez-Velazquez, J. A.
    FUNDAMENTA INFORMATICAE, 2022, 185 (03) : 201 - 220