Characterization of Roman domination critical unicyclic graphs

被引:0
|
作者
Hansberg, A. [1 ]
Rad, N. Jafari [2 ]
Volkmann, L. [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
[2] Shahrood Univ Technol, Dept Math, Shahrood, Iran
关键词
Domination; Roman domination; Roman domination critical graph; unicyclic graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Roman dominating function on a graph G is a function f : V(G) -> {0, 1, 2} satisfying the condition that every vertex u of G for which f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function is the value f(V(G)) = Sigma(u is an element of V(G)) f(u). The Roman domination number, gamma(R)(G), of G is the minimum weight of a Roman dominating function on G. A graph G is said to be Roman domination vertex critical or just gamma(R)-vertex critical, if gamma(R)(G - v) < gamma(R)(G) for any vertex v is an element of V(G). Similarly, G is Roman domination edge critical or just gamma(R)-edge critical, if gamma(R)(G + e) < gamma(R)(G) for any edge e is not an element of E(G). In this paper, we characterize gamma(R)-vertex critical connected unicyclic graphs as well gamma(R)-edge critical connected unicyclic graphs.
引用
收藏
页码:129 / 146
页数:18
相关论文
共 50 条
  • [1] A NOTE ON THE INDEPENDENT ROMAN DOMINATION IN UNICYCLIC GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    OPUSCULA MATHEMATICA, 2012, 32 (04) : 715 - 718
  • [2] Roman Domination Dot-critical Graphs
    Nader Jafari Rad
    Lutz Volkmann
    Graphs and Combinatorics, 2013, 29 : 527 - 533
  • [3] Vertex and edge critical Roman domination in graphs
    Rad, Nader Jafari
    Hansberg, Adriana
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2013, 92 : 73 - 88
  • [4] Roman Domination Dot-critical Graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    GRAPHS AND COMBINATORICS, 2013, 29 (03) : 527 - 533
  • [5] Characterization of Unicyclic Graphs with equal 2-Domination Number and Domination Number plus one
    Hansberg, Adriana
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2008, 77 : 265 - 276
  • [6] SOME RESULTS ON ROMAN DOMINATION EDGE CRITICAL GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    Volkmann, Lutz
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (02) : 195 - 203
  • [7] Independent Domination Stable Trees and Unicyclic Graphs
    Wu, Pu
    Jiang, Huiqin
    Nazari-Moghaddam, Sakineh
    Sheikholeslami, Seyed Mahmoud
    Shao, Zehui
    Volkmann, Lutz
    MATHEMATICS, 2019, 7 (09)
  • [8] Critical graphs with Roman domination number four
    Martinez-Perez, A.
    Oliveros, D.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 804 - 809
  • [9] Total restrained domination in unicyclic graphs
    Hattingh, Johannes H.
    Joubert, Ernst J.
    Jonck, Elizabeth
    Plummer, Andrew R.
    UTILITAS MATHEMATICA, 2010, 82 : 81 - 95
  • [10] Resolving Roman domination in graphs
    Pushpam, P. Roushini Leely
    Mahavir, B.
    Kamalam, M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)