共 50 条
Characterization of Roman domination critical unicyclic graphs
被引:0
|作者:
Hansberg, A.
[1
]
Rad, N. Jafari
[2
]
Volkmann, L.
[1
]
机构:
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
[2] Shahrood Univ Technol, Dept Math, Shahrood, Iran
关键词:
Domination;
Roman domination;
Roman domination critical graph;
unicyclic graph;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A Roman dominating function on a graph G is a function f : V(G) -> {0, 1, 2} satisfying the condition that every vertex u of G for which f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function is the value f(V(G)) = Sigma(u is an element of V(G)) f(u). The Roman domination number, gamma(R)(G), of G is the minimum weight of a Roman dominating function on G. A graph G is said to be Roman domination vertex critical or just gamma(R)-vertex critical, if gamma(R)(G - v) < gamma(R)(G) for any vertex v is an element of V(G). Similarly, G is Roman domination edge critical or just gamma(R)-edge critical, if gamma(R)(G + e) < gamma(R)(G) for any edge e is not an element of E(G). In this paper, we characterize gamma(R)-vertex critical connected unicyclic graphs as well gamma(R)-edge critical connected unicyclic graphs.
引用
收藏
页码:129 / 146
页数:18
相关论文