Characterization of Roman domination critical unicyclic graphs

被引:0
作者
Hansberg, A. [1 ]
Rad, N. Jafari [2 ]
Volkmann, L. [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
[2] Shahrood Univ Technol, Dept Math, Shahrood, Iran
关键词
Domination; Roman domination; Roman domination critical graph; unicyclic graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Roman dominating function on a graph G is a function f : V(G) -> {0, 1, 2} satisfying the condition that every vertex u of G for which f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function is the value f(V(G)) = Sigma(u is an element of V(G)) f(u). The Roman domination number, gamma(R)(G), of G is the minimum weight of a Roman dominating function on G. A graph G is said to be Roman domination vertex critical or just gamma(R)-vertex critical, if gamma(R)(G - v) < gamma(R)(G) for any vertex v is an element of V(G). Similarly, G is Roman domination edge critical or just gamma(R)-edge critical, if gamma(R)(G + e) < gamma(R)(G) for any edge e is not an element of E(G). In this paper, we characterize gamma(R)-vertex critical connected unicyclic graphs as well gamma(R)-edge critical connected unicyclic graphs.
引用
收藏
页码:129 / 146
页数:18
相关论文
共 4 条
[1]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[2]  
HANSBERG A, VERTEX EDGE IN PRESS
[3]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[4]   Defend the Roman Empire! [J].
Stewart, I .
SCIENTIFIC AMERICAN, 1999, 281 (06) :136-+