Legendrian knots, transverse knots and combinatorial Floer homology

被引:70
作者
Ozsvath, Peter
Szabo, Zoltan [2 ]
Thurston, Dylan [1 ]
机构
[1] Columbia Univ Barnard Coll, Dept Math, New York, NY 10027 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.2140/gt.2008.12.941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the combinatorial approach to knot Floer homology, we define an invariant for Legendrian knots (or links) in the three-sphere, with values in knot Floer homology. This invariant can also be used to construct an invariant of transverse knots.
引用
收藏
页码:941 / 980
页数:40
相关论文
共 22 条
[1]   Differential algebra of Legendrian links [J].
Chekanov, Y .
INVENTIONES MATHEMATICAE, 2002, 150 (03) :441-483
[2]   EMBEDDING KNOTS AND LINKS IN AN OPEN-BOOK .1. BASIC PROPERTIES [J].
CROMWELL, PR .
TOPOLOGY AND ITS APPLICATIONS, 1995, 64 (01) :37-58
[3]   Arc-presentations of links: Monotonic simplification [J].
Dynnikov, I. A. .
FUNDAMENTA MATHEMATICAE, 2006, 190 :29-76
[4]   Chekanov-Eliashberg invariants and transverse approximations of Legendrian knots [J].
Epstein, J ;
Fuchs, D ;
Meyer, M .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (01) :89-106
[5]  
Etnyre JB, 2005, HANDBOOK OF KNOT THEORY, P105, DOI 10.1016/B978-044451452-3/50004-6
[6]  
Etnyre John B., 2001, J. Symplectic Geom., V1, P63
[7]   Invariants of Legendrian and transverse knots in the standard contact space [J].
Fuchs, D ;
Tabachnikov, S .
TOPOLOGY, 1997, 36 (05) :1025-1053
[8]   GAUGE-THEORY FOR EMBEDDED SURFACES .1. [J].
KRONHEIMER, PB ;
MROWKA, TS .
TOPOLOGY, 1993, 32 (04) :773-826
[9]  
MANOLESCU C, ARRXIVMATHGT0607691
[10]   On combinatorial link Floer homology [J].
Manolescu, Ciprian ;
Ozsvath, Peter ;
Szabo, Zoltan ;
Thurston, Dylan .
GEOMETRY & TOPOLOGY, 2007, 11 :2339-2412