A new deep learning technique reveals the exclusive functional contributions of individual cancer mutations

被引:5
作者
Gupta, Prashant [1 ]
Jindal, Aashi [1 ]
Ahuja, Gaurav [2 ]
Jayadeva [1 ,3 ]
Sengupta, Debarka [2 ,4 ,5 ]
机构
[1] Indian Inst Technol Delhi IIT D, Dept Elect Engn, Delhi, India
[2] Indraprastha Inst Informat Technol Delhi IIIT D, Dept Computat Biol, Delhi, India
[3] Indian Inst Technol Delhi IIT D, Yardi Sch Artificial Intelligence, Delhi, India
[4] Indraprastha Inst Informat Technol Delhi IIIT D, Dept Comp Sci & Engn, Delhi, India
[5] Indraprastha Inst Informat Technol Delhi IIIT D, Ctr Artificial Intelligence, Delhi, India
关键词
ONE-CARBON METABOLISM; BROWSER;
D O I
10.1016/j.jbc.2022.102177
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cancers are caused by genomic alterations that may be inherited, induced by environmental carcinogens, or caused due to random replication errors. Postinduction of carcinogenicity, mutations further propagate and drastically alter the cancer genomes. Although a subset of driver mutations has been identified and characterized to date, most cancer-related somatic mutations are indistinguishable from germline variants or other noncancerous somatic mutations. Thus, such overlap impedes appreciation of many deleterious but previously uncharacterized somatic mutations. The major bottleneck arises due to patient-to-patient variability in mutational profiles, making it difficult to associate specific mutations with a given disease outcome. Here, we describe a newly developed technique Continuous Representation of Codon Switches (CRCS), a deep learning-based method that allows us to generate numerical vector representations of mutations, thereby enabling numerous machine learning-based tasks. We demonstrate three major applications of CRCS; first, we show how CRCS can help detect cancer-related somatic mutations in the absence of matched normal samples, which has applications in cell-free DNA-based assessment of tumor mutation burden. Second, the proposed approach also enables identification and exploration of driver genes; our analyses implicate DMD, RSK4, OFD1, WDR44, and AFF2 as potential cancer drivers. Finally, we used CRCS to score individual mutations in a tumor sample, which was found to be predictive of patient survival in bladder urothelial carcinoma, hepatocellular carcinoma, and lung adenocarcinoma. Taken together, we propose CRCS as a valuable computational tool for analysis of the functional significance of individual cancer mutations.
引用
收藏
页数:15
相关论文
共 73 条
[1]   Splicing mutations in human genetic disorders: examples, detection, and confirmation [J].
Abramowicz, Anna ;
Gos, Monika .
JOURNAL OF APPLIED GENETICS, 2018, 59 (03) :253-268
[2]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[3]   The repertoire of mutational signatures in human cancer [J].
Alexandrov, Ludmil B. ;
Kim, Jaegil ;
Haradhvala, Nicholas J. ;
Huang, Mi Ni ;
Ng, Alvin Wei Tian ;
Wu, Yang ;
Boot, Arnoud ;
Covington, Kyle R. ;
Gordenin, Dmitry A. ;
Bergstrom, Erik N. ;
Islam, S. M. Ashiqul ;
Lopez-Bigas, Nuria ;
Klimczak, Leszek J. ;
McPherson, John R. ;
Morganella, Sandro ;
Sabarinathan, Radhakrishnan ;
Wheeler, David A. ;
Mustonen, Ville ;
Getz, Gad ;
Rozen, Steven G. ;
Stratton, Michael R. .
NATURE, 2020, 578 (7793) :94-+
[4]   The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH [J].
Alfarouk, Khalid O. ;
Ahmed, Samrein B. M. ;
Elliott, Robert L. ;
Benoit, Amanda ;
Alqahtani, Saad S. ;
Ibrahim, Muntaser E. ;
Bashir, Adil H. H. ;
Alhoufie, Sari T. S. ;
Elhassan, Gamal O. ;
Wales, Christian C. ;
Schwartz, Laurent H. ;
Ali, Heyam S. ;
Ahmed, Ahmed ;
Forde, Patrick F. ;
Devesa, Jesus ;
Cardone, Rosa A. ;
Fais, Stefano ;
Harguindey, Salvador ;
Reshkin, Stephan J. .
METABOLITES, 2020, 10 (07) :1-16
[5]   Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics [J].
Asgari, Ehsaneddin ;
Mofrad, Mohammad R. K. .
PLOS ONE, 2015, 10 (11)
[6]   Rare variant association studies: considerations, challenges and opportunities [J].
Auer, Paul L. ;
Lettre, Guillaume .
GENOME MEDICINE, 2015, 7
[7]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404
[8]  
Chakravarty D, 2017, JCO PRECIS ONCOL, V1
[9]   Determining the optimal number and location of cutoff points with application to data of cervical cancer [J].
Chang, Chung ;
Hsieh, Meng-Ke ;
Chang, Wen-Yi ;
Chiang, An Jen ;
Chen, Jiabin .
PLOS ONE, 2017, 12 (04)
[10]   Significance of KDM6A mutation in bladder cancer immune escape [J].
Chen, Xingxing ;
Lin, Xuehua ;
Pang, Guofu ;
Deng, Jian ;
Xie, Qun ;
Zhang, Zhengrong .
BMC CANCER, 2021, 21 (01)