Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy q

被引:0
|
作者
Song, Ying [1 ,2 ]
Hu, Junjie [1 ]
Wu, Qiang [2 ,3 ]
Xu, Feng [2 ,3 ]
Nie, Shihong [2 ]
Zhao, Yaqin [2 ]
Bai, Sen [2 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, 24,South Sect 1 First Ring Rd, Chengdu 610065, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Radiotherapy, 37 Guo Xue Alley, Chengdu 610065, Peoples R China
[3] Sichuan Univ, West China Hosp, Lung Canc Ctr, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
AUTO-SEGMENTATION; CONSENSUS GUIDELINES; PELVIC VOLUMES; NORMAL TISSUE; CT IMAGES; ATLAS; VARIABILITY; VALIDATION; HEAD;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:186 / 192
页数:7
相关论文
共 50 条
  • [41] DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy
    Jin, Dakai
    Guo, Dazhou
    Ho, Tsung-Ying
    Harrison, Adam P.
    Xiao, Jing
    Tseng, Chen-Kan
    Lu, Le
    MEDICAL IMAGE ANALYSIS, 2021, 68
  • [42] Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
    Ma, Chen-Ying
    Zhou, Ju-Ying
    Xu, Xiao-Ting
    Guo, Jian
    Han, Miao-Fei
    Gao, Yao-Zong
    Du, Hui
    Stahl, Johannes N.
    Maltz, Jonathan S.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (02):
  • [43] Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer: National guidelines and contouring atlas by the Danish Breast Cancer Cooperative Group
    Nielsen, Mette H.
    Berg, Martin
    Pedersen, Anders N.
    Andersen, Karen
    Glavicic, Vladimir
    Jakobsen, Erik H.
    Jensen, Ingelise
    Josipovic, Mirjana
    Lorenzen, Ebbe L.
    Nielsen, Hanne M.
    Stenbygaard, Lars
    Thomsen, Mette S.
    Vallentin, Susanne
    Zimmermann, Sune
    Offersen, Birgitte V.
    ACTA ONCOLOGICA, 2013, 52 (04) : 703 - 710
  • [44] Clinical evaluation of deep learning–based clinical target volume three-channel auto-segmentation algorithm for adaptive radiotherapy in cervical cancer
    Chen-ying Ma
    Ju-ying Zhou
    Xiao-ting Xu
    Song-bing Qin
    Miao-fei Han
    Xiao-huan Cao
    Yao-zong Gao
    Lu Xu
    Jing-jie Zhou
    Wei Zhang
    Le-cheng Jia
    BMC Medical Imaging, 22
  • [45] The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer
    Hongbo Guo
    Jiazhou Wang
    Xiang Xia
    Yang Zhong
    Jiayuan Peng
    Zhen Zhang
    Weigang Hu
    Radiation Oncology, 16
  • [46] Human factors in the clinical implementation of deep learning-based automated contouring of pelvic organs at risk for MRI-guided radiotherapy
    Abdulkadir, Yasin
    Luximon, Dishane
    Morris, Eric
    Chow, Phillip
    Kishan, Amar U.
    Mikaeilian, Argin
    Lamb, James M.
    MEDICAL PHYSICS, 2023, 50 (10) : 5969 - 5977
  • [47] Deep learning-based classification and structure name standardization for organ at risk and target delineations in prostate cancer radiotherapy
    Gustafsson, Christian Jamtheim
    Lempart, Michael
    Sward, Johan
    Persson, Emilia
    Nyholm, Tufve
    Karlsson, Camilla Thellenberg
    Scherman, Jonas
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (12): : 51 - 63
  • [48] Extensive clinical testing of Deep Learning Segmentation models for thorax and breast cancer radiotherapy planning
    Mikalsen, Stine Gyland
    Skjotskift, Torleiv
    Flote, Vidar Gordon
    Hamalainen, Niklas Petteri
    Heydari, Mojgan
    Ryden-Eilertsen, Karsten
    ACTA ONCOLOGICA, 2023, 62 (10) : 1184 - 1193
  • [49] Deep Learning-Based Delineation of Head and Neck Organs at Risk: Geometric and Dosimetric Evaluation
    van Rooij, Ward
    Dahele, Max
    Brandao, Hugo Ribeiro
    Delaney, Alexander R.
    Slotman, Berend J.
    Verbakel, Wilko F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 104 (03): : 677 - 684
  • [50] Interobserver variation in clinical target volume and organs at risk segmentation in post-parotidectomy radiotherapy: can segmentation protocols help?
    Mukesh, M.
    Benson, R.
    Jena, R.
    Hoole, A.
    Roques, T.
    Scrase, C.
    Martin, C.
    Whitfield, G. A.
    Gemmill, J.
    Jefferies, S.
    BRITISH JOURNAL OF RADIOLOGY, 2012, 85 (1016) : E530 - E536