Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy q

被引:0
|
作者
Song, Ying [1 ,2 ]
Hu, Junjie [1 ]
Wu, Qiang [2 ,3 ]
Xu, Feng [2 ,3 ]
Nie, Shihong [2 ]
Zhao, Yaqin [2 ]
Bai, Sen [2 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, 24,South Sect 1 First Ring Rd, Chengdu 610065, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Radiotherapy, 37 Guo Xue Alley, Chengdu 610065, Peoples R China
[3] Sichuan Univ, West China Hosp, Lung Canc Ctr, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
AUTO-SEGMENTATION; CONSENSUS GUIDELINES; PELVIC VOLUMES; NORMAL TISSUE; CT IMAGES; ATLAS; VARIABILITY; VALIDATION; HEAD;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:186 / 192
页数:7
相关论文
共 50 条
  • [31] Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer
    Caravatta, Luciana
    Sallustio, Giuseppina
    Pacelli, Fabio
    Padula, Gilbert D. A.
    Deodato, Francesco
    Macchia, Gabriella
    Massaccesi, Mariangela
    Picardi, Vincenzo
    Cilla, Savino
    Marinelli, Alfonso
    Cellini, Numa
    Valentini, Vincenzo
    Morganti, Alessio G.
    RADIATION ONCOLOGY, 2012, 7
  • [32] The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer
    Guo, Hongbo
    Wang, Jiazhou
    Xia, Xiang
    Zhong, Yang
    Peng, Jiayuan
    Zhang, Zhen
    Hu, Weigang
    RADIATION ONCOLOGY, 2021, 16 (01)
  • [33] A deep learning model to predict dose-volume histograms of organs at risk in radiotherapy treatment plans
    Liu, Zhiqiang
    Chen, Xinyuan
    Men, Kuo
    Yi, Junlin
    Dai, Jianrong
    MEDICAL PHYSICS, 2020, 47 (11) : 5467 - 5481
  • [34] Clinically applicable deep learning framework for organs at risk delineation in CT images
    Tang, Hao
    Chen, Xuming
    Liu, Yang
    Lu, Zhipeng
    You, Junhua
    Yang, Mingzhou
    Yao, Shengyu
    Zhao, Guoqi
    Xu, Yi
    Chen, Tingfeng
    Liu, Yong
    Xie, Xiaohui
    NATURE MACHINE INTELLIGENCE, 2019, 1 (10) : 480 - 491
  • [35] Clinical evaluation of deep learning-based clinical target volume three-channel auto-segmentation algorithm for adaptive radiotherapy in cervical cancer
    Ma, Chen-ying
    Zhou, Ju-ying
    Xu, Xiao-ting
    Qin, Song-bing
    Han, Miao-fei
    Cao, Xiao-huan
    Gao, Yao-zong
    Xu, Lu
    Zhou, Jing-jie
    Zhang, Wei
    Jia, Le-cheng
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [36] Machine learning-based detection of aberrant deep learning segmentations of target and organs at risk for prostate radiotherapy using a secondary segmentation algorithm
    Claessens, Michael
    Vanreusel, Verdi
    De Kerf, Geert
    Mollaert, Isabelle
    Lofman, Fredrik
    Gooding, Mark J.
    Brouwer, Charlotte
    Dirix, Piet
    Verellen, Dirk
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (11)
  • [37] Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment
    Kihara, Sayaka
    Koike, Yuhei
    Takegawa, Hideki
    Anetai, Yusuke
    Nakamura, Satoaki
    Tanigawa, Noboru
    Koizumi, Masahiko
    MEDICAL DOSIMETRY, 2023, 48 (01) : 20 - 24
  • [38] Deep Learning-Aided Automatic Contouring of Clinical Target Volumes for Radiotherapy in Breast Cancer After Modified Radical Mastectomy
    You, Jinqiang
    Wang, Qingxin
    Wang, Ruoxi
    An, Qin
    Wang, Jing
    Yuan, Zhiyong
    Wang, Jun
    Chen, Haibin
    Yan, Ziye
    Wei, Jun
    Wang, Wei
    FRONTIERS IN PHYSICS, 2022, 9
  • [39] A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer
    Chen, Weijun
    Wang, Cheng
    Zhan, Wenming
    Jia, Yongshi
    Ruan, Fangfang
    Qiu, Lingyun
    Yang, Shuangyan
    Li, Yucheng
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study
    Choi, Min Seo
    Chang, Jee Suk
    Kim, Kyubo
    Kim, Jin Hee
    Kim, Tae Hyung
    Kim, Sungmin
    Cha, Hyejung
    Cho, Oyeon
    Choi, Jin Hwa
    Kim, Myungsoo
    Kim, Juree
    Kim, Tae Gyu
    Yeo, Seung-Gu
    Chang, Ah Ram
    Ahn, Sung-Ja
    Choi, Jinhyun
    Kang, Ki Mun
    Kwon, Jeanny
    Koo, Taeryool
    Kim, Mi Young
    Choi, Seo Hee
    Jeong, Bae Kwon
    Jang, Bum-Sup
    Jo, In Young
    Lee, Hyebin
    Kim, Nalee
    Park, Hae Jin
    Im, Jung Ho
    Lee, Sea-Won
    Cho, Yeona
    Lee, Sun Young
    Chang, Ji Hyun
    Chun, Jaehee
    Lee, Eung Man
    Kim, Jin Sung
    Shin, Kyung Hwan
    Kim, Yong Bae
    BREAST, 2024, 73