Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy q

被引:0
|
作者
Song, Ying [1 ,2 ]
Hu, Junjie [1 ]
Wu, Qiang [2 ,3 ]
Xu, Feng [2 ,3 ]
Nie, Shihong [2 ]
Zhao, Yaqin [2 ]
Bai, Sen [2 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, 24,South Sect 1 First Ring Rd, Chengdu 610065, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Radiotherapy, 37 Guo Xue Alley, Chengdu 610065, Peoples R China
[3] Sichuan Univ, West China Hosp, Lung Canc Ctr, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
AUTO-SEGMENTATION; CONSENSUS GUIDELINES; PELVIC VOLUMES; NORMAL TISSUE; CT IMAGES; ATLAS; VARIABILITY; VALIDATION; HEAD;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:186 / 192
页数:7
相关论文
共 50 条
  • [1] Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks
    Tian, Miao
    Wang, Hongqiu
    Liu, Xingang
    Ye, Yuyun
    Ouyang, Ganlu
    Shen, Yali
    Li, Zhiping
    Wang, Xin
    Wu, Shaozhi
    MEDICAL PHYSICS, 2023, 50 (10) : 6354 - 6365
  • [2] Clinical evaluation of the convolutional neural network-based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy
    Huang, Yangyang
    Song, Rui
    Qin, Tingting
    Yang, Menglin
    Liu, Zongwen
    ONCOLOGY LETTERS, 2024, 28 (05)
  • [3] Application of deep learning to auto -delineation of target volumes and organs at risk in radiotherapy
    Chen, M.
    Wu, S.
    Zhao, W.
    Zhou, Y.
    Zhou, Y.
    Wang, G.
    CANCER RADIOTHERAPIE, 2022, 26 (03): : 494 - 501
  • [4] Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks
    Men, Kuo
    Dai, Jianrong
    Li, Yexiong
    MEDICAL PHYSICS, 2017, 44 (12) : 6377 - 6389
  • [5] Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring
    van Dijk, Lisanne V.
    Van den Bosch, Lisa
    Aljabar, Paul
    Peressutti, Devis
    Both, Stefan
    Steenbakkers, Roel. J. H. M.
    Langendijk, Johannes A.
    Gooding, Mark J.
    Brouwer, Charlotte L.
    RADIOTHERAPY AND ONCOLOGY, 2020, 142 : 115 - 123
  • [6] Automatic clinical target volume delineation for cervical cancer in CT images using deep learning
    Shi, Jialin
    Ding, Xiaofeng
    Liu, Xien
    Li, Yan
    Liang, Wei
    Wu, Ji
    MEDICAL PHYSICS, 2021, 48 (07) : 3968 - 3981
  • [7] Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy
    Shi, Feng
    Hu, Weigang
    Wu, Jiaojiao
    Han, Miaofei
    Wang, Jiazhou
    Zhang, Wei
    Zhou, Qing
    Zhou, Jingjie
    Wei, Ying
    Shao, Ying
    Chen, Yanbo
    Yu, Yue
    Cao, Xiaohuan
    Zhan, Yiqiang
    Zhou, Xiang Sean
    Gao, Yaozong
    Shen, Dinggang
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] Clinical target volume and organs at risk segmentation for rectal cancer radiotherapy using the Flex U-Net network
    Sha, Xue
    Wang, Hui
    Sha, Hui
    Xie, Lu
    Zhou, Qichao
    Zhang, Wei
    Yin, Yong
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [9] A Survey on Automatic Delineation of Radiotherapy Target Volume based on Machine Learning
    Tao, Zhenchao
    Lyu, Shengfei
    DATA INTELLIGENCE, 2023, 5 (03) : 841 - 856
  • [10] RefineNet-based 2D and 3D automatic segmentations for clinical target volume and organs at risks for patients with cervical cancer in postoperative radiotherapy
    Xiao, Chengjian
    Jin, Juebin
    Yi, Jinling
    Han, Ce
    Zhou, Yongqiang
    Ai, Yao
    Xie, Congying
    Jin, Xiance
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (07):