Lower bound on the radius of analyticity of solution for fifth order KdV-BBM equation

被引:12
作者
Belayneh, Birilew [1 ]
Tegegn, Emawayish [1 ]
Tesfahun, Achenef [2 ]
机构
[1] Bahir Dar Univ, Dept Math, Bahir Dar, Ethiopia
[2] Nazarbayev Univ, Dept Math, Qabanbai Batyr Ave 53, Nur Sultan 010000, Kazakhstan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2022年 / 29卷 / 01期
关键词
KdV-BBM equation; Global well-posedness lower bound; Radius of analyticity; Gevrey spaces; NONLINEAR DISPERSIVE MEDIA; AMPLITUDE LONG WAVES; SPATIAL ANALYTICITY; BOUSSINESQ EQUATIONS; REGULARITY; SYSTEMS; DOMAIN;
D O I
10.1007/s00030-021-00738-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the uniform radius of spatial analyticity sigma(t) of solution at time t for the fifth order KdV-BBM equation cannot decay faster than 1/t for large t > 0, given initial data that is analytic with fixed radius sigma(0). This significantly improves a recent result by Carvajal and Panthee (On the radius of analyticity for the solution of the fifth order KdV-BBM model, 2020. arXiv:2009.09328) , where they established an exponential decay of sigma(t) for large t.
引用
收藏
页数:12
相关论文
共 23 条
[1]   Higher-Order Hamiltonian Model for Unidirectional Water Waves [J].
Bona, J. L. ;
Carvajal, X. ;
Panthee, M. ;
Scialom, M. .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (02) :543-577
[2]   Global solutions of the derivative Schrodinger equation in a class of functions analytic in a strip [J].
Bona, Jerry L. ;
Grujic, Zoran ;
Kalisch, Henrik .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) :186-203
[3]   Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation [J].
Bona, JL ;
Grujic, Z ;
Kalisch, H .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (06) :783-797
[4]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
NONLINEARITY, 2004, 17 (03) :925-952
[5]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. 1: Derivation and linear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :283-318
[6]   On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation [J].
Carvajal, X. ;
Panthee, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) :688-702
[7]  
Carvajal X., 2020, ARXIV200909328
[8]  
Ferrari AB, 1998, COMMUN PART DIFF EQ, V23, P1
[9]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[10]   On the radius of analyticity of solutions to the cubic Szego equation [J].
Gerard, Patrick ;
Guo, Yanqiu ;
Titi, Edriss S. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01) :97-108