Long-time expansion of a Bose-Einstein condensate: Observability of Anderson localization

被引:11
作者
Donsa, Stefan [1 ]
Hofstaetter, Harald [1 ]
Koch, Othmar [2 ]
Burgdoerfer, Joachim [1 ]
Brezinova, Iva [1 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, Wiedner Hauptstr 8-10-136, A-1040 Vienna, Austria
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
METAL-INSULATOR-TRANSITION; INTERACTING FERMIONS; SPLITTING METHODS; ONE-DIMENSION; EVOLUTION; SYSTEM; DELOCALIZATION; INTEGRATION; STATISTICS; DISORDER;
D O I
10.1103/PhysRevA.96.043630
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We numerically explore the long-time expansion of a one-dimensional Bose-Einstein condensate in a disorder potential employing the Gross-Pitaevskii equation. The goal is to search for unique signatures of Anderson localization in the presence of particle-particle interactions. Using typical experimental parameters, we show that the time scale for which the nonequilibrium dynamics of the interacting system begins to diverge from the noninteracting system exceeds the observation times up to now accessible in the experiment. We find evidence that the long-time evolution of the wave packet is characterized by (sub) diffusive spreading and a growing effective localization length, suggesting that interactions destroy Anderson localization.
引用
收藏
页数:13
相关论文
共 69 条
[1]  
Aleiner IL, 2010, NAT PHYS, V6, P900, DOI [10.1038/NPHYS1758, 10.1038/nphys1758]
[2]   Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2008, 77 (03)
[3]   EFFECTS OF ELECTRON-ELECTRON COLLISIONS WITH SMALL ENERGY TRANSFERS ON QUANTUM LOCALIZATION [J].
ALTSHULER, BL ;
ARONOV, AG ;
KHMELNITSKY, DE .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (36) :7367-7386
[4]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[5]   Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes [J].
Auzinger, Winfried ;
Hofstaetter, Harald ;
Ketcheson, David ;
Koch, Othmar .
BIT NUMERICAL MATHEMATICS, 2017, 57 (01) :55-74
[6]   Kinetic theory of nonlinear diffusion in a weakly disordered nonlinear Schrodinger chain in the regime of homogeneous chaos [J].
Basko, D. M. .
PHYSICAL REVIEW E, 2014, 89 (02)
[7]   Weak chaos in the disordered nonlinear Schrodinger chain: Destruction of Anderson localization by Arnold diffusion [J].
Basko, D. M. .
ANNALS OF PHYSICS, 2011, 326 (07) :1577-1655
[8]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[9]  
Berezinskii V. L., 1974, Sov. Phys. JETP, V38, P620
[10]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894