Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability of spiking in a Hodgkin-Huxley neuron model

被引:48
作者
Bashkirtseva, Irina [1 ]
Neiman, Alexander B. [2 ]
Ryashko, Lev [1 ]
机构
[1] Ural Fed Univ, Dept Math, Ekaterinburg, Russia
[2] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 05期
基金
俄罗斯基础研究基金会;
关键词
LARGE FLUCTUATIONS; OPTIMAL PATHS; OSCILLATIONS; COEXISTENCE; SYSTEMS;
D O I
10.1103/PhysRevE.91.052920
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the stochastic dynamics of a Hodgkin-Huxley neuron model in a regime of coexistent stable equilibrium and a limit cycle. In this regime, noise may suppress periodic firing by switching the neuron randomly to a quiescent state. We show that at a critical value of the injected current, the mean firing rate depends weakly on noise intensity, while the neuron exhibits giant variability of the interspike intervals and spike count. To reveal the dynamical origin of this noise-induced effect, we develop the stochastic sensitivity analysis and use the Mahalanobis metric for this four-dimensional stochastic dynamical system. We show that the critical point of giant variability corresponds to the matching of the Mahalanobis distances from attractors (stable equilibrium and limit cycle) to a three-dimensional surface separating their basins of attraction.
引用
收藏
页数:11
相关论文
共 40 条
[21]   Minimal energy control of a nanoelectromechanical memory element [J].
Khovanova, N. A. ;
Windelen, J. .
APPLIED PHYSICS LETTERS, 2012, 101 (02)
[22]   EFFECT OF NOISE AND PERTURBATIONS ON LIMIT-CYCLE SYSTEMS [J].
KURRER, C ;
SCHULTEN, K .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 50 (03) :311-320
[23]   Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia [J].
Lechner, HA ;
Baxter, DA ;
Clark, JW ;
Byrne, JH .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 75 (02) :957-962
[24]   Nonrenewal spike trains generated by stochastic neuron models [J].
Lindner, B ;
Longtin, A .
NOISE IN COMPLEX SYSTEMS AND STOCHASTIC DYNAMICS, 2003, 5114 :209-218
[25]   The diffusion coefficient of nonlinear Brownian motion [J].
Lindner, Benjamin .
NEW JOURNAL OF PHYSICS, 2007, 9
[26]   Critical Asymmetry for Giant Diffusion of Active Brownian Particles [J].
Lindner, Benjamin ;
Nicola, Ernesto M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (19)
[27]  
Mahalanobis Prasanta Chandra, 1936, On the generalized distance in statistics, V12, P49, DOI DOI 10.1007/S13171-019-00164-5
[28]   NOISE AND BIFURCATIONS [J].
MEUNIER, C ;
VERGA, AD .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (1-2) :345-375
[29]  
MILSHTEIN GN, 1995, PMM-J APPL MATH MEC+, V59, P47, DOI 10.1016/0021-8928(95)00006-B
[30]   Noisy inputs and the induction of on-off switching behavior in a neuronal pacemaker [J].
Paydarfar, David ;
Forger, Daniel B. ;
Clay, John R. .
JOURNAL OF NEUROPHYSIOLOGY, 2006, 96 (06) :3338-3348