Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability of spiking in a Hodgkin-Huxley neuron model

被引:48
作者
Bashkirtseva, Irina [1 ]
Neiman, Alexander B. [2 ]
Ryashko, Lev [1 ]
机构
[1] Ural Fed Univ, Dept Math, Ekaterinburg, Russia
[2] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 05期
基金
俄罗斯基础研究基金会;
关键词
LARGE FLUCTUATIONS; OPTIMAL PATHS; OSCILLATIONS; COEXISTENCE; SYSTEMS;
D O I
10.1103/PhysRevE.91.052920
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the stochastic dynamics of a Hodgkin-Huxley neuron model in a regime of coexistent stable equilibrium and a limit cycle. In this regime, noise may suppress periodic firing by switching the neuron randomly to a quiescent state. We show that at a critical value of the injected current, the mean firing rate depends weakly on noise intensity, while the neuron exhibits giant variability of the interspike intervals and spike count. To reveal the dynamical origin of this noise-induced effect, we develop the stochastic sensitivity analysis and use the Mahalanobis metric for this four-dimensional stochastic dynamical system. We show that the critical point of giant variability corresponds to the matching of the Mahalanobis distances from attractors (stable equilibrium and limit cycle) to a three-dimensional surface separating their basins of attraction.
引用
收藏
页数:11
相关论文
共 40 条
[1]  
[Anonymous], 2004, DISCRIMINANT ANAL ST
[2]   Stochastic sensitivity of 3D-cycles [J].
Bashkirtseva, IA ;
Ryashko, LB .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 66 (01) :55-67
[3]   Sensitivity analysis of the stochastically and periodically forced Brusselator [J].
Bashkirtseva, IA ;
Ryashko, LB .
PHYSICA A, 2000, 278 (1-2) :126-139
[4]   NOISE-INDUCED OSCILLATING BISTABILITY AND TRANSITION TO CHAOS IN FITZHUGH-NAGUMO MODEL [J].
Bashkirtseva, Irina ;
Ryashko, Lev ;
Slepukhina, Eudokia .
FLUCTUATION AND NOISE LETTERS, 2014, 13 (01)
[5]   Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique [J].
Bashkirtseva, Irina ;
Ryashko, Lev .
PHYSICAL REVIEW E, 2011, 83 (06)
[6]   Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps [J].
Beri, S ;
Mannella, R ;
Luchinsky, DG ;
Silchenko, AN ;
McClintock, PVE .
PHYSICAL REVIEW E, 2005, 72 (03)
[7]  
Cox D.R., 1966, STAT ANAL SERIES EVE, V1
[8]   Coexistence of tonic spiking oscillations in a leech neuron model [J].
Cymbalyuk, G ;
Shilnikov, A .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2005, 18 (03) :255-263
[9]  
Day M. V., 1996, Journal of Dynamics and Differential Equations, V8, P573, DOI 10.1007/BF02218845
[10]   MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs [J].
Dhooge, A ;
Govaerts, W ;
Kuznetsov, YA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (02) :141-164