Microtubule nanospool formation by active self-assembly is not initiated by thermal activation

被引:27
|
作者
Luria, Isaac [2 ]
Crenshaw, Jasmine [2 ]
Downs, Matthew [1 ,2 ]
Agarwal, Ashutosh [1 ,2 ]
Seshadri, Shruti Banavara [2 ]
Gonzales, John [1 ]
Idan, Ofer [1 ]
Kamcev, Jovan [1 ]
Katira, Parag [2 ]
Pandey, Shivendra [2 ]
Nitta, Takahiro [3 ]
Phillpot, Simon R. [2 ]
Hess, Henry [1 ]
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[3] Gifu Univ, Dept Math & Design Engn, Gifu 5011193, Japan
基金
美国国家科学基金会;
关键词
ASSISTED LIGHT INACTIVATION; MOLECULAR SHUTTLES; PERSISTENCE LENGTH; KINESIN; TRANSPORT; MOTORS; FLUCTUATIONS; RIGIDITY; FORCE; CARGO;
D O I
10.1039/c0sm00802h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biotinylated microtubules partially coated with streptavidin and gliding on a surface coated with kinesin motors can cross-link with each other and assemble into nanospools with a diameter of a few micrometres. The size distribution of these nanospools is determined, and it is shown with simulations of microtubule gliding that these spools are too small to be formed by thermally activated turns in the gliding direction (a Brownian ratchet mechanism). Instead, spool formation is primarily the result of two processes: pinning of gliding microtubules to inactive motors and simultaneous cross-linking of multiple microtubules.
引用
收藏
页码:3108 / 3115
页数:8
相关论文
共 50 条
  • [31] Parallel Computation Using Active Self-assembly
    Chen, Moya
    Xin, Doris
    Woods, Damien
    DNA COMPUTING AND MOLECULAR PROGRAMMING, DNA 2013, 2013, 8141 : 16 - 30
  • [32] Self-assembly of active amphiphilic Janus particles
    Mallory, S. A.
    Alarcon, F.
    Cacciuto, A.
    Valeriani, C.
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [33] Parallel computation using active self-assembly
    Chen, Moya
    Xin, Doris
    Woods, Damien
    NATURAL COMPUTING, 2015, 14 (02) : 225 - 250
  • [34] An Empirical Study of the Performance of Active Self-Assembly
    Tangchoopong, Thanaphon
    Requicha, Aristides A. G.
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 1838 - 1842
  • [35] Parallel computation using active self-assembly
    Moya Chen
    Doris Xin
    Damien Woods
    Natural Computing, 2015, 14 : 225 - 250
  • [36] Self-Assembly of an Optically Active Conjugated Oligoelectrolyte
    Ortony, Julia H.
    Chatterjee, Tirtha
    Garner, Logan E.
    Chworos, Arkadiusz
    Mikhailovsky, Alexander
    Kramer, Edward J.
    Bazan, Guillermo C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (21) : 8380 - 8387
  • [37] Self-assembly of active bifunctional Brownian particles
    Landi, Caterina
    Russo, John
    Sciortino, Francesco
    Valeriani, Chantal
    SOFT MATTER, 2024, 21 (01)
  • [38] Phoretic self-assembly of active colloidal molecules*
    Lei, Lijie
    Wang, Shuo
    Zhang, Xinyuan
    Lai, Wenjie
    Wu, Jinyu
    Gao, Yongxiang
    CHINESE PHYSICS B, 2021, 30 (05)
  • [39] Optimal Design for Active Self-assembly System
    Xue, Yuzhen
    Grover, Martha A.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3269 - 3274
  • [40] Self-assembly of synthetic peptides:: Formation of amphipathic surfaces and head-to-tail self-assembly
    Giralt, E
    Dalcol, I
    Millet, O
    Contreras, MA
    Ferrer, T
    Royo, M
    Pons, M
    Nicolás, E
    PEPTIDES FOR THE NEW MILLENNIUM, 2000, : 316 - 317