Microtubule nanospool formation by active self-assembly is not initiated by thermal activation

被引:27
|
作者
Luria, Isaac [2 ]
Crenshaw, Jasmine [2 ]
Downs, Matthew [1 ,2 ]
Agarwal, Ashutosh [1 ,2 ]
Seshadri, Shruti Banavara [2 ]
Gonzales, John [1 ]
Idan, Ofer [1 ]
Kamcev, Jovan [1 ]
Katira, Parag [2 ]
Pandey, Shivendra [2 ]
Nitta, Takahiro [3 ]
Phillpot, Simon R. [2 ]
Hess, Henry [1 ]
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[3] Gifu Univ, Dept Math & Design Engn, Gifu 5011193, Japan
基金
美国国家科学基金会;
关键词
ASSISTED LIGHT INACTIVATION; MOLECULAR SHUTTLES; PERSISTENCE LENGTH; KINESIN; TRANSPORT; MOTORS; FLUCTUATIONS; RIGIDITY; FORCE; CARGO;
D O I
10.1039/c0sm00802h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biotinylated microtubules partially coated with streptavidin and gliding on a surface coated with kinesin motors can cross-link with each other and assemble into nanospools with a diameter of a few micrometres. The size distribution of these nanospools is determined, and it is shown with simulations of microtubule gliding that these spools are too small to be formed by thermally activated turns in the gliding direction (a Brownian ratchet mechanism). Instead, spool formation is primarily the result of two processes: pinning of gliding microtubules to inactive motors and simultaneous cross-linking of multiple microtubules.
引用
收藏
页码:3108 / 3115
页数:8
相关论文
共 50 条
  • [1] Mechanisms Underlying the Active Self-Assembly of Microtubule Rings and Spools
    VanDelinder, Virginia
    Brener, Stephanie
    Bachand, George D.
    BIOMACROMOLECULES, 2016, 17 (03) : 1048 - 1056
  • [2] Self-Assembly of Microtubule Tactoids
    Chauhan, Prashali
    Sahu, Sumon
    Goodbee, Niaz
    Martin, Sophia
    Lee, Hong Beom
    Branch, Ruell
    Schwarz, Jennifer M.
    Ross, Jennifer L.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (184):
  • [3] Lipids - Microtubule self-assembly
    Raviv, U
    Needleman, DJ
    Pfohl, T
    Ojeda-Lopez, M
    Miller, HP
    Wilson, L
    Safinya, CR
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 77A - 77A
  • [4] Rapid Microtubule Self-Assembly Kinetics
    Gardner, Melissa K.
    Charlebois, Blake D.
    Janosi, Imre M.
    Howard, Jonathon
    Hunt, Alan J.
    Odde, David J.
    CELL, 2011, 146 (04) : 582 - 592
  • [5] CONTROL OF NUCLEATION IN MICROTUBULE SELF-ASSEMBLY
    BAYLEY, PM
    BUTLER, FMM
    MANSER, EJ
    FEBS LETTERS, 1986, 205 (02) : 230 - 234
  • [6] Active self-assembly
    Arbuckle, D
    Requicha, AAG
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 896 - 901
  • [7] THERMODYNAMIC ANALYSIS OF MICROTUBULE SELF-ASSEMBLY INVITRO
    JOHNSON, KA
    BORISY, GG
    JOURNAL OF MOLECULAR BIOLOGY, 1979, 133 (02) : 199 - 216
  • [8] ERYTHROCYTE MICROTUBULE ASSEMBLY INVITRO - TUBULIN OLIGOMERS LIMIT THE RATE OF MICROTUBULE SELF-ASSEMBLY
    MURPHY, DB
    WALLIS, KT
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1986, 261 (05) : 2319 - 2324
  • [9] FORMATION OF MULTILAYERS BY SELF-ASSEMBLY
    TILLMAN, N
    ULMAN, A
    PENNER, TL
    LANGMUIR, 1989, 5 (01) : 101 - 111
  • [10] Structural models for the self-assembly and microtubule interactions of γ-, δ-, and ε-tubulin
    Inclan, YF
    Nogales, E
    MOLECULAR BIOLOGY OF THE CELL, 2000, 11 : 188A - 188A