Constructions of optical orthogonal codes from finite geometry

被引:7
|
作者
Alderson, T. L. [1 ]
Mellinger, Keith E.
机构
[1] Univ New Brunswick, Dept Math Sci, St John, NB E2L 4L5, Canada
[2] Univ Mary Washington, Dept Math, Fredericksburg, VA 22401 USA
关键词
optical orthogonal codes; arcs; Baer subplanes;
D O I
10.1137/050632257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The link between finite geometry and various classes of error-correcting codes is well known. Arcs in projective spaces, for instance, have a close tie to linear MDS codes as well as the high-performing low-density parity-check codes. In this article, we demonstrate a connection between arcs and optical orthogonal codes (OOCs), a class of nonlinear binary codes used for many modern communication applications. Using arcs and Baer subspaces of finite projective spaces, we construct some infinite classes of OOCs with auto-correlation and cross-correlation both larger than 1.
引用
收藏
页码:785 / 793
页数:9
相关论文
共 50 条
  • [41] NEW CONSTRUCTIONS OF OPTIMAL CYCLICALLY PERMUTABLE CONSTANT WEIGHT CODES
    MORENO, O
    ZHANG, Z
    KUMAR, PV
    ZINOVIEV, VA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) : 448 - 455
  • [42] A new family of two-dimensional optical orthogonal codes for massive optical CDMA networks - art. no. 60223Z
    Ji, JH
    Xu, M
    Yang, SW
    Zhang, ZP
    Wang, K
    Network Architectures, Management, and Applications III, Pts 1 and 2, 2005, 6022 : Z223 - Z223
  • [43] Codes for optical CDMA
    Omrani, Reza
    Kumar, P. Vijay
    SEQUENCES AND THEIR APPLICATIONS - SETA 2006, 2006, 4086 : 34 - 46
  • [44] New asymptotically optimal three-dimensional wave-length/space/time optical orthogonal codes for OCDMA systems
    Ortiz-Ubarri, Jose
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (04): : 785 - 794
  • [45] New asymptotically optimal three-dimensional wave-length/space/time optical orthogonal codes for OCDMA systems
    José Ortiz-Ubarri
    Cryptography and Communications, 2020, 12 : 785 - 794
  • [46] Cubic Curves, Finite Geometry and Cryptography
    Bruen, A. A.
    Hirschfeld, J. W. P.
    Wehlau, D. L.
    ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (03) : 265 - 278
  • [47] Constructions for Multichannel Conflict-Avoiding Codes With AM-OPPTS Restriction
    Wang, Lidong
    Feng, Tao
    Li, Yueting
    Wang, Xiaomiao
    Guo, Zhanrong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (11) : 7398 - 7413
  • [48] Cyclic Constant-Weight Codes: Upper Bounds and New Optimal Constructions
    Lan, Liantao
    Chang, Yanxun
    Wang, Lidong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6328 - 6341
  • [49] Constructions of cyclic quaternary constant-weight codes of weight three and distance four
    Lan, Liantao
    Chang, Yanxun
    Wang, Lidong
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (05) : 1063 - 1083
  • [50] Generalized threshold secret sharing and finite geometry
    Ligeti, Peter
    Sziklai, Peter
    Takats, Marcella
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (09) : 2067 - 2078