Hamilton-Jacobi-Bellman equations for optimal control processes with convex state constraints

被引:18
|
作者
Hermosilla, Cristopher [1 ]
Vinter, Richard [2 ]
Zidani, Hasnaa [3 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Av Espana 1680, Valparaiso, Chile
[2] Imperial Coll London, EEE Dept, London SW7 2BT, England
[3] ENSTA ParisTech, Unite Math Appl, 828 Bd Marechaux, F-91762 Palaiseau, France
关键词
State constraint sets; Optimal control problems; Convex constraints; HJB equations; Viscosity solutions; CONTROLLABILITY;
D O I
10.1016/j.sysconle.2017.09.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aims at studying some optimal control problems with convex state constraint sets. It is known that for state constrained problems, and when the state constraint set coincides with the closure of its interior, the value function satisfies a Hamilton-Jacobi equation in the constrained viscosity sense. This notion of solution has been introduced by H.M. Soner (1986) and provides a characterization of the value functions in many situations where an inward pointing condition (IPC) is satisfied. Here, we first identify a class of control problems where the constrained viscosity notion is still suitable to characterize the value function without requiring the IPC. Moreover, we generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 50 条
  • [21] Hamilton-Jacobi-Bellman equations for Rydberg-blockade processes
    Fromonteil, Charles
    Tricarico, Roberto
    Cesa, Francesco
    Pichler, Hannes
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [22] Hamilton-Jacobi-Bellman equations for Rydberg-blockade processes
    Fromonteil, Charles
    Tricarico, Roberto
    Cesa, Francesco
    Pichler, Hannes
    arXiv,
  • [23] HAMILTON-JACOBI-BELLMAN EQUATIONS ASSOCIATED TO SYMMETRIC STABLE PROCESSES
    Zalinescu, Adrian
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 (01): : 163 - 196
  • [24] Solving a Hamilton-Jacobi-Bellman equation with constraints
    Edalati, Alireza
    Hipp, Christian
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2013, 85 (04) : 637 - 651
  • [25] Stochastic optimal control with random coefficients and associated stochastic Hamilton-Jacobi-Bellman equations
    Moon, Jun
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [26] Optimal control of stochastic differential equations with random impulses and the Hamilton-Jacobi-Bellman equation
    Yin, Qian-Bao
    Shu, Xiao-Bao
    Guo, Yu
    Wang, Zi-Yu
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (05): : 2113 - 2135
  • [27] Verification theorems for Hamilton-Jacobi-Bellman equations
    Garavello, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (05) : 1623 - 1642
  • [28] NONLINEAR POTENTIALS FOR HAMILTON-JACOBI-BELLMAN EQUATIONS
    NOSOVSKIJ, GV
    ACTA APPLICANDAE MATHEMATICAE, 1993, 30 (02) : 101 - 123
  • [29] Hamilton-Jacobi-Bellman equations on time scales
    Department of Mathematics, Guizhou University, Guiyang, 550025, China
    不详
    Math. Comput. Model., 9-10 (2019-2028):
  • [30] THE HAMILTON-JACOBI-BELLMAN EQUATION FOR TIME-OPTIMAL CONTROL
    EVANS, LC
    JAMES, MR
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (06) : 1477 - 1489