Hamilton-Jacobi-Bellman equations for optimal control processes with convex state constraints

被引:18
|
作者
Hermosilla, Cristopher [1 ]
Vinter, Richard [2 ]
Zidani, Hasnaa [3 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Av Espana 1680, Valparaiso, Chile
[2] Imperial Coll London, EEE Dept, London SW7 2BT, England
[3] ENSTA ParisTech, Unite Math Appl, 828 Bd Marechaux, F-91762 Palaiseau, France
关键词
State constraint sets; Optimal control problems; Convex constraints; HJB equations; Viscosity solutions; CONTROLLABILITY;
D O I
10.1016/j.sysconle.2017.09.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aims at studying some optimal control problems with convex state constraint sets. It is known that for state constrained problems, and when the state constraint set coincides with the closure of its interior, the value function satisfies a Hamilton-Jacobi equation in the constrained viscosity sense. This notion of solution has been introduced by H.M. Soner (1986) and provides a characterization of the value functions in many situations where an inward pointing condition (IPC) is satisfied. Here, we first identify a class of control problems where the constrained viscosity notion is still suitable to characterize the value function without requiring the IPC. Moreover, we generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 50 条
  • [1] On Hamilton-Jacobi-Bellman equations with convex gradient constraints
    Hynd, Ryan
    Mawi, Henok
    INTERFACES AND FREE BOUNDARIES, 2016, 18 (03) : 291 - 315
  • [2] Hamilton-Jacobi-Bellman equations and optimal control
    Dolcetta, IC
    VARIATIONAL CALCULUS, OPTIMAL CONTROL AND APPLICATIONS, 1998, 124 : 121 - 132
  • [3] Hamilton-Jacobi-Bellman equations for quantum optimal control
    Gough, J.
    Belavkin, V. A.
    Smolyanov, O. G.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION 2006, 2006, : 293 - 297
  • [4] HAMILTON-JACOBI-BELLMAN EQUATIONS FOR THE OPTIMAL CONTROL OF A STATE EQUATION WITH MEMORY
    Carlier, Guillaume
    Tahraoui, Rabah
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03): : 744 - 763
  • [5] Policy iteration for Hamilton-Jacobi-Bellman equations with control constraints
    Kundu, Sudeep
    Kunisch, Karl
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (03) : 785 - 809
  • [6] OPTIMAL STOCHASTIC-CONTROL AND HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (10): : 567 - 570
  • [7] Hamilton-Jacobi-Bellman equations with Γ-convergence for optimal control problems
    Briani, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A : 29 - 32
  • [8] Hamilton-Jacobi-Bellman equations for quantum optimal feedback control
    Gough, J
    Belavkin, VP
    Smolyanov, OG
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) : S237 - S244
  • [9] Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints
    Frankowska, H
    Plaskacz, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) : 818 - 838
  • [10] Hamilton-Jacobi-Bellman Equations
    Festa, Adriano
    Guglielmi, Roberto
    Hermosilla, Christopher
    Picarelli, Athena
    Sahu, Smita
    Sassi, Achille
    Silva, Francisco J.
    OPTIMAL CONTROL: NOVEL DIRECTIONS AND APPLICATIONS, 2017, 2180 : 127 - 261