NO formation and destruction during combustion of high temperature preheated pulverized coal

被引:10
|
作者
Wang, Shuai [1 ]
Niu, Yanqing [1 ]
Zhu, Guangqing [1 ]
Ding, Yiyu [2 ]
Guo, Xiaolian [3 ]
Hui, Shi'en [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[2] NTNU Norwegian Univ Sci & Technol, Fac Engn, Dept Energy & Proc Engn, Trondheim, Norway
[3] Zhejiang Safety Technol Co Ltd, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Preheating-combustion; Temperature; NO formation; NO destruction; OXY-FUEL COMBUSTION; MILD COMBUSTION; NITROGEN CHEMISTRY; FLUIDIZED-BED; EMISSIONS; REDUCTION; CONVERSION; MODEL;
D O I
10.1016/j.joei.2021.08.009
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Preheating of pulverized coal (PC) has previously been verified as an effective method for reducing NO emission during coal combustion. However, studies on NO formation and destruction characteristics related to the combustion of high-temperature preheated PC are rare. In this study, two drop tube furnaces were connected in series to model the preheating-combustion process, and the effect of combustion temperature on NO emission during the oxidation of high-temperature preheated PC was studied in detail through experiment and kinetic modeling. Results confirmed the effectiveness of preheating on NO reduction with a maximum efficiency as high as 71.73%. Results also indicated that increasing the combustion temperature promoted both the formation and destruction of NO, while the increase in the NO formation rate was steeper than its destruction. This led to an increase in NO from 223 to 273 mg.m(-3) as the combustion temperature increasing from 1273 K to 1473 K at preheating temperature of 1673 K. In addition, the rate of production (ROP) of NO formation increased from 8.54E-9 to 3.49E-7 mol.cm(-3).s(-1) with an elevated temperature from 1073 K to 1873 K, whereas the rate of NO destruction increased only from 1.40E-9 to 7.45E-8 ma cm(-3).s(-1). Finally, the ROP analysis also indicated that the presence of background NO posed heavy impact on conversion of char-N and significantly improved the NO destruction rate.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [21] Effects of gas temperature fluctuation on the NO release from pulverized coal particle during char combustion
    Zhang, Hongtao
    Zhang, Jian
    FUEL, 2010, 89 (05) : 1177 - 1180
  • [22] Influence of coal co-firing on the particulate matter formation during pulverized biomass combustion
    Wang, Xuebin
    Hu, Zhongfa
    Wang, Guogang
    Luo, Xiaotao
    Ruan, Renhui
    Jin, Qiming
    Tan, Houzhan
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (03) : 450 - 458
  • [23] Formation characteristics of NO and N 2 O during air-staged combustion of pulverized coal
    Liu, Songlin
    Fan, Weidong
    FUEL, 2024, 372
  • [24] Effect of kaolin additive on PM2.5 reduction during pulverized coal combustion: Importance of sodium and its occurrence in coal
    Si, Junping
    Liu, Xiaowei
    Xu, Minghou
    Sheng, Lei
    Zhou, Zijian
    Wang, Chao
    Zhang, Yang
    Seo, Yong-Chil
    APPLIED ENERGY, 2014, 114 : 434 - 444
  • [25] Flamelet LES of pulverized coal combustion and NO formation characteristics in a supercritical CO 2 boiler
    Tang, Xinzhou
    Zhao, Chunguang
    Xing, Jiangkuan
    Cai, Ruipeng
    Luo, Kun
    Fan, Jianren
    Gu, Mingyan
    APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2024, 19
  • [26] Characterizing char particle fragmentation during pulverized coal combustion
    Tilghman, Matthew B.
    Mitchell, Reginald E.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 : 2461 - 2469
  • [27] Experimental and numerical investigation on nitrogen transformation in pressurized oxy-fuel combustion of pulverized coal
    Liang, Xiaorui
    Wang, Qinhui
    Luo, Zhongyang
    Eddings, Eric
    Ring, Terry
    Li, Simin
    Yu, Peng
    Yan, Jiqing
    Yang, Xudong
    Jia, Xin
    JOURNAL OF CLEANER PRODUCTION, 2021, 278
  • [28] A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal
    Hashemi, Hamid
    Hansen, Stine
    Toftegaard, Maja B.
    Pedersen, Kim H.
    Jensen, Anker D.
    Dam-Johansen, Kim
    Glarborg, Peter
    ENERGY & FUELS, 2011, 25 (10) : 4280 - 4289
  • [29] Characterizing pulverized coal combustion for high-ash content Indian coal
    Sengupta, Aditi
    Das, Sandipan Kumar
    Nandi, Barun Kumar
    Sharma, Piyush
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 244 - 261
  • [30] Effect of H2O on the NO emission characteristics of pulverized coal during oxy-fuel combustion
    Lei, Ming
    Sun, Cen
    Zou, Chan
    Mi, Hang
    Wang, Chunbo
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (12) : 11767 - 11774