Zero-modes of non-Abelian solitons in three-dimensional gauge theories

被引:5
作者
Eto, Minoru [1 ]
Gudnason, Sven Bjarke [2 ,3 ]
机构
[1] RIKEN Nishina Ctr, Phys Math Lab, Wako, Saitama 3510198, Japan
[2] Univ Pisa, Dept Phys, I-56127 Pisa, Italy
[3] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy
关键词
CHERN-SIMONS VORTICES; GINZBURG-LANDAU EQUATIONS; CHARGED VORTICES; MULTIVORTEX SOLUTIONS; MONOPOLES; INDEX; FIELD; TERM; NONINVARIANCE; CONFINEMENT;
D O I
10.1088/1751-8113/44/9/095401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study non-Abelian solitons of the Bogomol'nyi type in N = 2 (d = 2 + 1) supersymmetric Chern-Simons (CS) and Yang-Mills (YM) theory with a generic gauge group. In CS theory, we find topological, non-topological and semi-local (non-)topological vortices of non-Abelian kinds in unbroken, broken and partially broken vacua. We calculate the number of zero-modes using an index theorem and then we apply the moduli matrix formalism to realize the moduli parameters. For the topological solitons we exhaust all the moduli while we study several examples of the non- topological and semi-local solitons. We find that the zero-modes of the topological solitons are governed by the moduli matrix H-0 only and those of the non- topological solitons are governed by both H-0 and the gauge invariant field Omega. We prove local uniqueness of the master equation in the YM case and finally compare all results between the CS and YM theories.
引用
收藏
页数:39
相关论文
共 75 条
[1]   Non-Abelian vortices in Chern-Simons theories and their induced effective theory [J].
Aldrovandi, L. G. ;
Schaposnik, F. A. .
PHYSICAL REVIEW D, 2007, 76 (04)
[2]  
[Anonymous], 1999, ARXIVHEPTH9902115
[3]  
ATIYAH MF, 1968, ANN MATH, V87, P484, DOI 10.2307/1970715
[4]   Nonabelian superconductors:: vortices and confinement in N=2 SQCD [J].
Auzzi, R ;
Bolognesi, S ;
Evslin, J ;
Konishi, K ;
Yung, A .
NUCLEAR PHYSICS B, 2003, 673 (1-2) :187-216
[5]   Non-Abelian Vortices on Compact Riemann Surfaces [J].
Baptista, J. M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (03) :799-812
[6]   PSEUDOPARTICLE PARAMETERS FOR ARBITRARY GAUGE GROUPS [J].
BERNARD, CW ;
CHRIST, NH ;
GUTH, AH ;
WEINBERG, EJ .
PHYSICAL REVIEW D, 1977, 16 (10) :2967-2977
[7]   NOTE ON ATIYAH-SINGER INDEX THEOREM [J].
BERNARD, CW ;
GUTH, AH ;
WEINBERG, EJ .
PHYSICAL REVIEW D, 1978, 17 (04) :1053-1055
[8]   Local and semi-local vortices in the Yang-Mills-Chern-Simons model [J].
Buck, M. ;
Moreno, E. F. ;
Schaposnik, F. A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (20)
[9]   AXIAL ANOMALIES AND INDEX THEOREMS ON OPEN SPACES [J].
CALLIAS, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (03) :213-234
[10]   Dynamics of Chern-Simons vortices [J].
Collie, Benjamin ;
Tong, David .
PHYSICAL REVIEW D, 2008, 78 (06)