Presentation Counts: Microenvironmental Regulation of Stem Cells by Biophysical and Material Cues

被引:124
作者
Keung, Albert J. [1 ]
Kumar, Sanjay [2 ]
Schaffer, David V. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
来源
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 26 | 2010年 / 26卷
关键词
microenvironment; niche; biomaterial; biophysics; mechanotransduction; NEURAL PROGENITOR CELLS; EPIDERMAL-GROWTH-FACTOR; FOCAL ADHESION KINASE; COLONY-FORMING CELLS; FLUID SHEAR-STRESS; SELF-RENEWAL; BONE-MARROW; SELECTIVE DIFFERENTIATION; ENDOTHELIAL-CELLS; STOCHASTIC-MODEL;
D O I
10.1146/annurev-cellbio-100109-104042
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Stem cells reside in adult and embryonic tissues in a broad spectrum of developmental stages and lineages, and they are thus naturally exposed to diverse microenvironments or niches that modulate their hallmark behaviors of self-renewal and differentiation into one or more mature lineages. Within each such microenvironment, stem cells sense and process multiple biochemical and biophysical cues, which can exert redundant, competing, or orthogonal influences to collectively regulate cell fate and function. The proper presentation of these myriad regulatory signals is required for tissue development and homeostasis, and their improper appearance can potentially lead to disease. Whereas these complex regulatory cues can be challenging to dissect using traditional cell culture paradigms, recently developed engineered material systems offer advantages for investigating biochemical and biophysical cues, both static and dynamic, in a controlled, modular, and quantitative fashion. Advances in the development and use of such systems have helped elucidate novel regulatory mechanisms controlling stem cell behavior, particularly the importance of solid-phase mechanical and immobilized biochemical microenvironmental signals, with implications for basic stem cell biology, disease, and therapeutics.
引用
收藏
页码:533 / 556
页数:24
相关论文
共 147 条
[1]   Biomechanical forces promote embryonic haematopoiesis [J].
Adamo, Luigi ;
Naveiras, Olaia ;
Wenzel, Pamela L. ;
McKinney-Freeman, Shannon ;
Mack, Peter J. ;
Gracia-Sancho, Jorge ;
Suchy-Dicey, Astrid ;
Yoshimoto, Momoko ;
Lensch, M. William ;
Yoder, Mervin C. ;
Garcia-Cardena, Guillermo ;
Daley, George Q. .
NATURE, 2009, 459 (7250) :1131-U120
[2]   The hematopoietic stem cell in its place [J].
Adams, GB ;
Scadden, DT .
NATURE IMMUNOLOGY, 2006, 7 (04) :333-337
[3]   Functional immobilization of signaling proteins enables control of stem cell fate [J].
Alberti, Kristin ;
Davey, Ryan E. ;
Onishi, Kento ;
George, Sophia ;
Salchert, Katrin ;
Seib, F. Philipp ;
Bornhaeuser, Martin ;
Pompe, Tilo ;
Nagy, Andras ;
Werner, Carsten ;
Zandstra, Peter W. .
NATURE METHODS, 2008, 5 (07) :645-650
[4]   Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization [J].
Albinsson, S ;
Nordström, I ;
Hellstrand, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (33) :34849-34855
[5]   Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response [J].
Antia, Meher ;
Baneyx, Gretchen ;
Kubow, Kristopher E. ;
Vogel, Viola .
FARADAY DISCUSSIONS, 2008, 139 :229-249
[6]   The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells [J].
Banerjee, Akhilesh ;
Arha, Manish ;
Choudhary, Soumitra ;
Ashton, Randolph S. ;
Bhatia, Surita R. ;
Schaffer, David V. ;
Kane, Ravi S. .
BIOMATERIALS, 2009, 30 (27) :4695-4699
[7]   Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories [J].
Bauwens, Celine Liu ;
Peerani, Raheem ;
Niebruegge, Sylvia ;
Woodhouse, Kimberly A. ;
Kumacheva, Eugenia ;
Husain, Mansoor ;
Zandstra, Peter W. .
STEM CELLS, 2008, 26 (09) :2300-2310
[8]   CYTOLOGICAL DEMONSTRATION OF CLONAL NATURE OF SPLEEN COLONIES DERIVED FROM TRANSPLANTED MOUSE MARROW CELLS [J].
BECKER, AJ ;
TILL, JE ;
MCCULLOCH, EA .
NATURE, 1963, 197 (486) :452-&
[9]   IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro [J].
Bendall, Sean C. ;
Stewart, Morag H. ;
Menendez, Pablo ;
George, Dustin ;
Vijayaragavan, Kausalia ;
Werbowetski-Ogilvie, Tamra ;
Ramos-Mejia, Veronica ;
Rouleau, Anne ;
Yang, Jiabi ;
Bosse, Marc ;
Lajoie, Gilles ;
Bhatia, Mickie .
NATURE, 2007, 448 (7157) :1015-U3
[10]   Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells [J].
Benoit, Danielle S. W. ;
Schwartz, Michael P. ;
Durney, Andrew R. ;
Anseth, Kristi S. .
NATURE MATERIALS, 2008, 7 (10) :816-823