Heterogeneous Integration of a Compact Universal Photonic Engine for Silicon Photonics Applications in HPC

被引:11
作者
Hsia, H. [1 ]
Tsai, C. H. [1 ]
Ting, K. C. [1 ]
Kuo, F. W. [1 ]
Lin, C. C. [1 ]
Wang, C. T. [1 ]
Hou, S. Y. [1 ]
Chiou, W. C. [1 ]
Yu, Douglas C. H. [1 ]
机构
[1] TSMC, Hsinchu, Taiwan
来源
IEEE 71ST ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2021) | 2021年
关键词
silicon photonics; 3D integration; heterogeneous integration; high performance computing; fiber couplers;
D O I
10.1109/ECTC32696.2021.00052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the prominent challenges for widespread adoption of silicon photonics (SiPh) technology is the availability of an integration platform that can simultaneously meet a wide range of power, performance, and cost criteria in different applications. As a result, there is a diversity of SiPh integrated solutions proposed or demonstrated, but none is considered as a common solution. In this paper, we will first survey industry proposed photonic engine structures in monolithic and heterogeneous integration on their strengths and weaknesses. We will then propose a compact and universal PE structure- COUPE (COmpact Universal Photonic Engine) that could consolidate different requirements onto the same integration platform. COUPE has the electrical IC - photonic IC integration with the electrical interface designed to minimize the EIC-PIC coupling loss. Compared with industry proposed PE technology, COUPE can provide low insertion loss for both grating coupler (GC) and edge coupler (EC). For either GC or EC, the COUPE is a solid structure without cavities or mechanically weak parts, thus enabling low insertion loss without contamination or mechanical concerns. COUPE also has the flexibility to be integrated easily with host ASIC to form a co-package structure. The COUPE integration scheme can meet the most demanding system requirements and pave the way for SiPh-based wafer level system integration (WLSI) for high performance computing applications.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 36 条
[21]   Realization of a Compact Optical Interconnect on Silicon by Heterogeneous Integration of III-V [J].
Spuesens, Thijs ;
Bauwelinck, Johan ;
Regreny, Philippe ;
Van Thourhout, Dries .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (14) :1332-1335
[22]   Towards contact integration for III-V/Silicon heterogeneous Photonics devices [J].
Ghegin, E. ;
Rodriguez, Ph. ;
Nemouchi, F. ;
Jany, Ch. ;
Brihoum, M. ;
Halimaoui, A. ;
Sagnes, I. ;
Szelag, B. .
2016 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE / ADVANCED METALLIZATION CONFERENCE (IITC/AMC), 2016, :69-71
[23]   Heterogeneous Integration of III-V on Silicon for System-in-Package Photonic Transceivers [J].
Fish, Gregory ;
Koch, Brian R. ;
Norberg, Erik J. ;
Roth, Jonathon E. ;
Ramaswamy, Anand ;
Hutchinson, John ;
Shin, Jae-Hyuk ;
Fang, Alexander .
2016 INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC), 2016,
[24]   Towards scalable heterogeneous integration of thin-film lithium niobate on silicon photonics using microtransfer printing [J].
Vanackere, Tom ;
Vandekerckhove, Tom ;
Billet, Maximilien ;
Tan, Ying ;
Niels, Margot ;
Zhai, Tingting ;
Parracino, Antonietta ;
Bonito, Valeria ;
Withouck, Jorik ;
Roelkens, Gunther ;
Van Thourhout, Dries ;
Clemmen, Stephane ;
Kuyken, Bart .
INTEGRATED PHOTONICS PLATFORMS III, 2024, 13012
[25]   Integration of 2D materials on a silicon photonics platform for optoelectronics applications [J].
Youngblood, Nathan ;
Li, Mo .
NANOPHOTONICS, 2017, 6 (06) :1205-1218
[26]   A Universal Bonding Strategy for Achieving CMOS-Compatible Silicon Heterogeneous Integration [J].
Du, Yu ;
Jiang, Heng ;
Zhu, Bingxuan ;
Yan, Han ;
Chai, Yao ;
Tsoi, Chi Chung ;
Zhang, Xuming ;
Wang, Chenxi .
ADVANCED MATERIALS TECHNOLOGIES, 2025,
[27]   Silicon Photonics Technology on 200-mm CMOS Platform for High Integration Applications [J].
Li, Bin ;
Tang, Bo ;
Zhang, Peng ;
Liu, Daoqun ;
Liu, Ruonan ;
Zhou, Zhangyu ;
Yu, Jinzhong ;
Li, Zhihua .
OPTOELECTRONIC DEVICES AND INTEGRATION VII, 2018, 10814
[28]   Silicon photonics: Applications, recent results and integration challenges as it relates to CMOS processing; an industry perspective [J].
Cohen, O ;
Salib, M ;
Morse, M ;
Paniccia, M .
SEMICONDUCTOR AND ORGANIC OPTOELECTRONIC MATERIALS AND DEVICES, 2005, 5624 :268-272
[29]   1.6 Tbps Silicon Photonics Integrated Circuit and 800 Gbps Photonic Engine for Switch Co-Packaging Demonstration [J].
Fathololoumi, Saeed ;
Hui, David ;
Jadhav, Susheel ;
Chen, Jian ;
Nguyen, Kimchau ;
Sakib, M. N. ;
Li, Z. ;
Mahalingam, Hari ;
Amiralizadeh, Siamak ;
Tang, Nelson N. ;
Potluri, Harinadh ;
Montazeri, Mohammad ;
Frish, Harel ;
Defrees, Reece A. ;
Seibert, Christopher ;
Krichevsky, Alexander ;
Doylend, Jonathan K. ;
Heck, John ;
Venables, R. ;
Dahal, A. ;
Awujoola, A. ;
Vardapetyan, A. ;
Kaur, Guneet ;
Cen, Min ;
Kulkarni, Vishnu ;
Islam, Syed S. ;
Spreitzer, R. L. ;
Garag, S. ;
Alduino, A. C. ;
Chiou, R. K. ;
Kamyab, L. ;
Gupta, S. ;
Xie, B. ;
Appleton, R. S. ;
Hollingsworth, S. ;
McCargar, S. ;
Akulova, Y. ;
Brown, K. M. ;
Jones, R. ;
Zhu, Daniel ;
Liljeberg, Thomas ;
Liao, Ling .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (04) :1155-1161
[30]   Echelle grating for Silicon Photonics applications: integration of Electron Beam Lithography in the process flow and first results [J].
Kaschel, Mathias ;
Letzkus, Florian ;
Butschke, Joerg ;
Skwierawski, Piotr ;
Schneider, Marc ;
Weber, Marc .
SILICON PHOTONICS AND PHOTONIC INTEGRATED CIRCUITS V, 2016, 9891