Stability of the Duality Gap in Linear Optimization

被引:6
作者
Goberna, M. A. [1 ]
Ridolfi, A. B. [2 ]
Vera de Serio, V. N. [3 ]
机构
[1] Univ Alicante, Dept Math, E-03080 Alicante, Spain
[2] Univ Nacl Cuyo, Fac Ciencias Econ, Fac Ciencias Aplicadas Ind, Mendoza, Argentina
[3] Univ Nacl Cuyo, Fac Ciencias Econ, Mendoza, Argentina
关键词
Linear programming; Linear semi-infinite programming; Duality gap function; Stability; Primal-dual partition; LOWER SEMICONTINUITY; FEASIBLE SET; PERTURBATIONS;
D O I
10.1007/s11228-017-0405-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the duality gap function g that measures the difference between the optimal values of the primal problem and of the dual problem in linear programming and in linear semi-infinite programming. We analyze its behavior when the data defining these problems may be perturbed, considering seven different scenarios. In particular we find some stability results by proving that, under mild conditions, either the duality gap of the perturbed problems is zero or + a around the given data, or g has an infinite jump at it. We also give conditions guaranteeing that those data providing a finite duality gap are limits of sequences of data providing zero duality gap for sufficiently small perturbations, which is a generic result.
引用
收藏
页码:617 / 636
页数:20
相关论文
共 22 条
[1]  
[Anonymous], 1976, Optimisation: Methodes Numeriques
[2]  
Astafev N.N., 1991, INFINITE SYSTEMS LIN
[3]  
Brosowski B, 1982, PARAMETRIC SEMIINFIN
[4]   ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS [J].
CHARNES, A ;
COOPER, WW ;
KORTANEK, K .
MANAGEMENT SCIENCE, 1965, 12 (01) :113-121
[5]   Stability in Linear Optimization Under Perturbations of the Left-Hand Side Coefficients [J].
Daniilidis, A. ;
Goberna, M. A. ;
Lopez, M. A. ;
Lucchetti, R. .
SET-VALUED AND VARIATIONAL ANALYSIS, 2015, 23 (04) :737-758
[6]   Lower Semicontinuity of the Feasible Set Mapping of Linear Systems Relative to Their Domains [J].
Daniilidis, Aris ;
Goberna, Miguel A. ;
Lopez, Marco A. ;
Lucchetti, Roberto .
SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (01) :67-92
[7]   Genericity Results in Linear Conic Programming-A Tour d'Horizon [J].
Duer, Mirjam ;
Jargalsaikhan, Bolor ;
Still, Georg .
MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (01) :77-94
[8]  
FISCHER T, 1983, METH VERF MATH PHYS, V27, P175
[9]   Matrix Perturbation and Optimal Partition Invariancy in Linear Optimization [J].
Ghaffari-Hadigheh, Alireza ;
Mehanfar, Nayyer .
ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2015, 32 (03)
[10]  
Goberna M.A., 2014, Post-Optimal Analysis in Linear Semi-Infinite Optimization