Discrepancy curves for multi-parameter regularization

被引:17
作者
Lu, Shuai [1 ,2 ]
Pereverzev, Sergei V. [1 ]
Shao, Yuanyuan [3 ]
Tautenhahn, Ulrich [3 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Univ Appl Sci Zittau Gorlitz, Dept Math, D-02755 Zittau, Germany
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2010年 / 18卷 / 06期
关键词
Ill-posed problems; inverse problems; noisy right-hand side; Tikhonov regularization; multi-parameter regularization; discrepancy principle; order optimal error bounds; Newton's method; global convergence; monotone convergence; HILBERT SCALES; TIKHONOV REGULARIZATION; PRINCIPLE;
D O I
10.1515/JIIP.2010.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For solving linear ill-posed problems regularization methods are required when the right-hand side is with some noise. In the present paper regularized solutions are obtained by multi-parameter regularization and the regularization parameters are chosen by a multi-parameter discrepancy principle. Under certain smoothness assumptions we provide order optimal error bounds that characterize the accuracy of the regularized solutions. For the computation of the regularization parameters fast algorithms of Newton type are applied which are based on special transformations. These algorithms are globally and monotonically convergent. Some of our theoretical results are illustrated by numerical experiments. We also show how the proposed approach may be employed for multi-task approximation.
引用
收藏
页码:655 / 676
页数:22
相关论文
共 50 条
  • [41] Regularization properties of the sequential discrepancy principle for Tikhonov regularization in Banach spaces
    Anzengruber, Stephan W.
    Hofmann, Bernd
    Mathe, Peter
    APPLICABLE ANALYSIS, 2014, 93 (07) : 1382 - 1400
  • [42] On the monotone error rule for parameter choice in iterative and continuous regularization methods
    Hämarik, U
    Tautenhahn, U
    BIT, 2001, 41 (05): : 1029 - 1038
  • [43] A discretizing Tikhonov regularization method via modified parameter choice rules
    Zhang, Rong
    Xie, Feiping
    Luo, Xingjun
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (04): : 859 - 873
  • [44] On the Monotone Error Rule for Parameter Choice in Iterative and Continuous Regularization Methods
    U. Hämarik
    U. Tautenhahn
    BIT Numerical Mathematics, 2001, 41 : 1029 - 1038
  • [45] Embedded techniques for choosing the parameter in Tikhonov regularization
    Gazzola, S.
    Novati, P.
    Russo, M. R.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (06) : 796 - 812
  • [46] Parameter Choice Strategy That Computes Regularization Parameter before Computing the Regularized Solution
    George, Santhosh
    Padikkal, Jidesh
    Kunnarath, Ajil
    Argyros, Ioannis K.
    Regmi, Samundra
    MODELLING, 2024, 5 (02): : 530 - 548
  • [47] Multi-penalty regularization with a component-wise penalization
    Naumova, V.
    Pereverzyev, S. V.
    INVERSE PROBLEMS, 2013, 29 (07)
  • [48] Heuristic discrepancy principle for variational regularization of inverse problems
    Liu, Huan
    Real, Rommel
    Lu, Xiliang
    Jia, Xianzheng
    Jin, Qinian
    INVERSE PROBLEMS, 2020, 36 (07)
  • [49] REGULARIZATION PARAMETER SELECTION SCHEME FOR MOVING FORCE IDENTIFICATION
    Liu, Huanlin
    Yu, Ling
    FUNDAMENTAL RESEARCH IN STRUCTURAL ENGINEERING: RETROSPECTIVE AND PROSPECTIVE, VOLS 1 AND 2, 2016, : 947 - 952
  • [50] Parameter determination for Tikhonov regularization problems in general form
    Park, Y.
    Reichel, L.
    Rodriguez, G.
    Yu, X.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 343 : 12 - 25