Classification of Edge-Transitive Rose Window Graphs

被引:31
作者
Kovacs, Istvan [1 ]
Kutnar, Klavdija [1 ]
Marusic, Dragan [1 ,2 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Ljubljana, IMFM, Ljubljana 1000, Slovenia
关键词
group; graph; rose window; vertex-transitive; edge-transitive; arc-transitive; COVERINGS;
D O I
10.1002/jgt.20475
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given natural numbers n >= 3 and 1 <= a, r <= n-1, the rose window graph R(n)(a, r) is a quartic graph with vertex set {x(i)vertical bar i is an element of Z(n)} boolean OR {y(i)vertical bar i is an element of Z(n)} and edge set {{x(i), x(i+1)}vertical bar i is an element of Z(n)} boolean OR {{y(i), y(i+r)}vertical bar i is an element of Z(n)} boolean OR {{x(i), y(i)}vertical bar i is an element of Z(n)} boolean OR {{x(i+a), y(i)}vertical bar i is an element of Z(n)}. In this article a complete classification of edge-transitive rose window graphs is given, thus solving one of the three open problems about these graphs posed by Steve Wilson in 2001. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 216-231, 2010
引用
收藏
页码:216 / 231
页数:16
相关论文
共 50 条
[41]   Super-connected edge transitive graphs [J].
Zhang, Zhao ;
Meng, Jixiang .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (10) :1948-1953
[42]   On finite edge transitive graphs and rotary maps [J].
Li, Cai Heng .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) :1063-1075
[43]   Rose window graphs underlying rotary maps [J].
Kovacs, Istvan ;
Kutnar, Klavdija ;
Janos Ruff .
DISCRETE MATHEMATICS, 2010, 310 (12) :1802-1811
[44]   Serni-hyper-connected edge transitive graphs [J].
Zhang, Z ;
Meng, JX .
DISCRETE MATHEMATICS, 2006, 306 (07) :705-710
[45]   A classification of pentavalent arc-transitive bicirculants [J].
Antoncic, Iva ;
Hujdurovic, Ademir ;
Kutnar, Klavdija .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (03) :643-668
[46]   On fixity of arc-transitive graphs [J].
Florian Lehner ;
Primož Potočnik ;
Pablo Spiga .
Science China Mathematics, 2021, 64 :2603-2610
[47]   On fixity of arc-transitive graphs [J].
Lehner, Florian ;
Potocnik, Primoz ;
Spiga, Pablo .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (12) :2603-2610
[48]   A census of 4-valent half-arc-transitive graphs and arc-transitive digraphs of valence two [J].
Potocnik, Primoz ;
Spiga, Pablo ;
Verret, Gabriel .
ARS MATHEMATICA CONTEMPORANEA, 2015, 8 (01) :133-148
[49]   On the edge connectivity, hamiltonicity, and toughness of vertex-transitive graphs [J].
van den Heuvel, J ;
Jackson, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 77 (01) :138-149
[50]   Counting edge-transitive, one-ended, three-connected planar maps with a given growth rate [J].
Pisanski, Tomaz .
ARS MATHEMATICA CONTEMPORANEA, 2009, 2 (02) :173-180