Classification of Edge-Transitive Rose Window Graphs

被引:31
作者
Kovacs, Istvan [1 ]
Kutnar, Klavdija [1 ]
Marusic, Dragan [1 ,2 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Ljubljana, IMFM, Ljubljana 1000, Slovenia
关键词
group; graph; rose window; vertex-transitive; edge-transitive; arc-transitive; COVERINGS;
D O I
10.1002/jgt.20475
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given natural numbers n >= 3 and 1 <= a, r <= n-1, the rose window graph R(n)(a, r) is a quartic graph with vertex set {x(i)vertical bar i is an element of Z(n)} boolean OR {y(i)vertical bar i is an element of Z(n)} and edge set {{x(i), x(i+1)}vertical bar i is an element of Z(n)} boolean OR {{y(i), y(i+r)}vertical bar i is an element of Z(n)} boolean OR {{x(i), y(i)}vertical bar i is an element of Z(n)} boolean OR {{x(i+a), y(i)}vertical bar i is an element of Z(n)}. In this article a complete classification of edge-transitive rose window graphs is given, thus solving one of the three open problems about these graphs posed by Steve Wilson in 2001. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 216-231, 2010
引用
收藏
页码:216 / 231
页数:16
相关论文
共 50 条
[31]   Constructing cubic edge- but not vertex-transitive graphs [J].
Marusic, D .
JOURNAL OF GRAPH THEORY, 2000, 35 (02) :152-160
[32]   On cyclic edge-connectivity of transitive graphs [J].
Wang, Bing ;
Zhang, Zhao .
DISCRETE MATHEMATICS, 2009, 309 (13) :4555-4563
[33]   Super cyclically edge connected transitive graphs [J].
Zhang, Zhao ;
Wang, Bing .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (04) :549-562
[34]   Stability of Rose Window graphs [J].
Ahanjideh, Milad ;
Kovacs, Istvan ;
Kutnar, Klavdija .
JOURNAL OF GRAPH THEORY, 2024, 107 (04) :810-832
[35]   Super cyclically edge connected transitive graphs [J].
Zhao Zhang ;
Bing Wang .
Journal of Combinatorial Optimization, 2011, 22 :549-562
[36]   Edge-transitive bi-p-metacirculants of valency p [J].
Qin, Yan-Li ;
Zhou, Jin-Xin .
ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (01) :215-235
[37]   NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS ON THE NON-ABELIAN GROUPS OF ORDER 4p2, WHERE p IS A PRIME NUMBER [J].
Pakravesh, Y. ;
Iranmanesh, A. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03) :951-974
[38]   Finite permutation groups with a regular dihedral subgroup, and edge-transitive dihedrants [J].
Song, Shu Jiao ;
Li, Cai Heng ;
Zhang, Hua .
JOURNAL OF ALGEBRA, 2014, 399 :948-959
[39]   On connected tetravalent normal edge-transitive Cayley graphs of non-Abelian groups of order 5p2 [J].
Khazaei, Soghra ;
Sharifi, Hesam .
TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (02) :524-537
[40]   3-restricted edge connectivity of vertex transitive graphs [J].
Ou, JP ;
Zhang, FJ .
ARS COMBINATORIA, 2005, 74 :291-301