Classification of Edge-Transitive Rose Window Graphs

被引:30
|
作者
Kovacs, Istvan [1 ]
Kutnar, Klavdija [1 ]
Marusic, Dragan [1 ,2 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Ljubljana, IMFM, Ljubljana 1000, Slovenia
关键词
group; graph; rose window; vertex-transitive; edge-transitive; arc-transitive; COVERINGS;
D O I
10.1002/jgt.20475
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given natural numbers n >= 3 and 1 <= a, r <= n-1, the rose window graph R(n)(a, r) is a quartic graph with vertex set {x(i)vertical bar i is an element of Z(n)} boolean OR {y(i)vertical bar i is an element of Z(n)} and edge set {{x(i), x(i+1)}vertical bar i is an element of Z(n)} boolean OR {{y(i), y(i+r)}vertical bar i is an element of Z(n)} boolean OR {{x(i), y(i)}vertical bar i is an element of Z(n)} boolean OR {{x(i+a), y(i)}vertical bar i is an element of Z(n)}. In this article a complete classification of edge-transitive rose window graphs is given, thus solving one of the three open problems about these graphs posed by Steve Wilson in 2001. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 216-231, 2010
引用
收藏
页码:216 / 231
页数:16
相关论文
共 50 条
  • [1] Classification of edge-transitive Nest graphs
    Kovacs, Istvan
    GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [2] Classification of edge-transitive Nest graphs
    István Kovács
    Graphs and Combinatorics, 2023, 39
  • [3] EDGE-TRANSITIVE PLANAR GRAPHS
    GRUNBAUM, B
    SHEPHARD, GC
    JOURNAL OF GRAPH THEORY, 1987, 11 (02) : 141 - 155
  • [4] Edge-transitive token graphs
    Zhang, Ju
    Zhou, Jin-Xin
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [5] Biprimitive edge-transitive pentavalent graphs
    Cai, Qi
    Lu, Zai Ping
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [6] Semiregular automorphisms of edge-transitive graphs
    Michael Giudici
    Primož Potočnik
    Gabriel Verret
    Journal of Algebraic Combinatorics, 2014, 40 : 961 - 972
  • [7] Perfect Matchings in Edge-Transitive Graphs
    Marandi, A.
    Nejah, A. H.
    Behmaram, A.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 5 : S27 - S33
  • [8] Semiregular automorphisms of edge-transitive graphs
    Giudici, Michael
    Potocnik, Primoz
    Verret, Gabriel
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (04) : 961 - 972
  • [9] Weakly Norming Graphs are Edge-Transitive
    Alexander Sidorenko
    Combinatorica, 2020, 40 : 601 - 604
  • [10] A family of edge-transitive Cayley graphs
    Jiangmin Pan
    Zhaofei Peng
    Journal of Algebraic Combinatorics, 2019, 49 : 147 - 167