Local Commuting Projector Hamiltonians and the Quantum Hall Effect

被引:28
作者
Kapustin, Anton [1 ]
Fidkowski, Lukasz [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
CONDUCTANCE; QUANTIZATION;
D O I
10.1007/s00220-019-03444-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that neither Integer nor Fractional Quantum Hall Effects with nonzero Hall conductivity are possible in gapped systems described by Local Commuting Projector Hamiltonians.
引用
收藏
页码:763 / 769
页数:7
相关论文
共 13 条
[1]   QUANTIZATION OF THE HALL CONDUCTANCE FOR GENERAL, MULTIPARTICLE SCHRODINGER HAMILTONIANS [J].
AVRON, JE ;
SEILER, R .
PHYSICAL REVIEW LETTERS, 1985, 54 (04) :259-262
[2]   The Adiabatic Theorem and Linear Response Theory for Extended Quantum Systems [J].
Bachmann, Sven ;
De Roeck, Wojciech ;
Fraas, Martin .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 361 (03) :997-1027
[3]   Quantization of Conductance in Gapped Interacting Systems [J].
Bachmann, Sven ;
Bols, Alex ;
De Roeck, Wojciech ;
Fraas, Martin .
ANNALES HENRI POINCARE, 2018, 19 (03) :695-708
[4]  
Bezrukavnikov R., ARXIV180807602CONDMA
[5]  
FELDMAN D, COMMUNICATION
[6]  
Gubeladze I.D., 1987, Soobshch. Akad. Nauk Gruzin. SSR, V125, P289, DOI [10.1070/SM1989v063n01ABEH003266, DOI 10.1070/SM1989V063N01ABEH003266]
[7]   Quantization of Hall Conductance for Interacting Electrons on a Torus [J].
Hastings, Matthew B. ;
Michalakis, Spyridon .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (01) :433-471
[8]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30
[9]  
Lam T.Y., 2006, Serre's problem on projective modules
[10]  
Monaco D., ARXIV170701852MATHPH