MTS model based force prediction for machining of Ti-6Al-4V

被引:6
作者
Pan, Zhipeng [1 ]
Shih, Donald S. [2 ]
Garmestani, Hamid [3 ]
Rollett, Anthony D. [4 ]
Liang, Steven Y. [1 ]
机构
[1] Georgia Inst Technol, Woodruff Sch Mech Engn, 801 Ferst Dr NW, Atlanta, GA 30332 USA
[2] Kumamoto Univ, Magnesium Res Ctr, Chuo Ku, 2-39-1 Kurokami, Kumamoto 8608555, Japan
[3] Georgia Inst Technol, Sch Mat Sci & Engn, 771 Ferst Dr NW, Atlanta, GA 30332 USA
[4] Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave,Wean Hall 3325, Pittsburgh, PA 15213 USA
关键词
Machining; Titanium; Microstructure; Flow stress; Force; Modeling; SERRATED CHIP FORMATION; TITANIUM-ALLOY TI-6AL-4V; PHASE-TRANSFORMATION; MICROSTRUCTURE; SEGMENTATION; SIMULATIONS; BEHAVIOR;
D O I
10.1299/jamdsm.2017jamdsm0033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The high temperature and severe plastic deformation could promote workpiece material microstructure evolution in the machining process. The material mechanical properties are functions of the material microstructure attributes. Traditional material flow stress model approximates the material mechanical behavior at a continuum level by ignoring the microstructure effects. In the current study, a microstructure based mechanical threshold stress (MTS) model is proposed for the machining process application. The MTS model takes the material grain boundary and dislocation resistance into account. Within both the analytical and FEA machining process modeling framework, the MTS model is implemented for the machining forces prediction. The validation of the MTS application into machining forces prediction are conducted by comparison with experimental results. Good agreement is found between the experiment and prediction. Additionally, slight force prediction improvement is observed by comparing with the traditional Johnson-cook flow stress model.
引用
收藏
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 2006, RESIDUAL STRESS MODE
[2]  
[Anonymous], 1993, MAT PROPERTIES HDB T
[3]  
Ansoy Y. M., 2015, J MATER PROCESS TECH, V220, P1
[4]   Machinability of titanium alloys (Ti6Al4V and Ti555.3) [J].
Arrazola, P. -J. ;
Garay, A. ;
Iriarte, L. -M. ;
Armendia, M. ;
Marya, S. ;
Le Maitre, F. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (05) :2223-2230
[5]   Observations on chip formation and acoustic emission in machining Ti-6Al-4V alloy [J].
Barry, J ;
Byrne, G ;
Lennon, D .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2001, 41 (07) :1055-1070
[6]   A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V [J].
Calamaz, Madalina ;
Coupard, Dorninique ;
Girot, Franck .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2008, 48 (3-4) :275-288
[7]   Towards a physical FE modelling of a dry cutting operation: influence of dynamic recrystallization when machining AISI 1045 [J].
Courbon, C. ;
Mabrouki, T. ;
Rech, J. ;
Mazuyer, D. ;
Perrard, F. ;
D'Eramo, E. .
14TH CIRP CONFERENCE ON MODELING OF MACHINING OPERATIONS (CIRP CMMO), 2013, 8 :516-521
[8]  
Dahl PR, 1968, SOLID FRICTION MODEL
[9]   Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining [J].
Dandekar, Chinmaya R. ;
Shin, Yung C. ;
Barnes, John .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2010, 50 (02) :174-182
[10]   AN ANALYSIS OF THE LOW-TEMPERATURE, LOW AND HIGH STRAIN-RATE DEFORMATION OF TI-6AL-4V [J].
FOLLANSBEE, PS ;
GRAY, GT .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1989, 20 (05) :863-874