Refinements of quantum Hermite-Hadamard- type inequalities

被引:33
作者
Budak, Huseyin [1 ]
Khan, Sundas [2 ]
Ali, Muhammad Aamir [3 ]
Chu, Yu-Ming [4 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[2] GC Women Univ, Dept Math, Sialkot, Pakistan
[3] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[4] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
关键词
Hermite-Hadamard inequality; q-integral; quantum calculus; convex function; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.1515/math-2021-0029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first obtain two new quantum Hermite-Hadamard-type inequalities for newly defined quantum integral. Then we establish several refinements of quantum Hermite-Hadamard inequalities.
引用
收藏
页码:724 / 734
页数:11
相关论文
共 34 条
[1]  
Agarwal, J ANAL-INDIA
[2]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[3]   Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Akkurt, Abdullah ;
Chu, Yu-Ming .
OPEN MATHEMATICS, 2021, 19 :440-449
[4]   On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions [J].
Ali, Muhammad Aamir ;
Alp, Necmettin ;
Budak, Huseyin ;
Chu, Yu-Ming ;
Zhang, Zhiyue .
OPEN MATHEMATICS, 2021, 19 (01) :427-439
[5]   Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables [J].
Ali, Muhammad Aamir ;
Chu, Yu-Ming ;
Budak, Hueseyin ;
Akkurt, Abdullah ;
Yildirim, Hueseyin ;
Zahid, Manzoor Ahmed .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[6]   New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions [J].
Ali, Muhammad Aamir ;
Abbas, Mujahid ;
Budak, Huseyin ;
Agarwal, Praveen ;
Murtaza, Ghulam ;
Chu, Yu-Ming .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[7]  
Ali MA, 2021, ADV DIFFER EQU-NY, V2021, DOI 10.1186/s13662-020-03163-1
[8]   Some new Simpson's type inequalities for coordinated convex functions in quantum calculus [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Zhang, Zhiyue ;
Yildirim, Huseyin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4515-4540
[9]  
Alp N, 2020, APPL MATH E-NOTES, V20, P341
[10]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203