A computational study to design zeolite-templated carbon materials with high performance for CO2/N2 separation

被引:14
作者
Cui, Jing [1 ]
Zhang, Kexin [1 ]
Zhang, Xiangyu [1 ]
Lee, Yongjin [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
关键词
Zeolite templated carbon; Carbon capture; Molecular simulation; Nitrogen doping; Ionic liquid; METAL-ORGANIC FRAMEWORKS; EFFICIENT CO2 ADSORPTION; IONIC LIQUID-MEMBRANES; CAPTURE PERFORMANCE; DIOXIDE CAPTURE; GAS SEPARATION; POROUS CARBONS; SURFACE-AREA; CAPACITY; VAPOR;
D O I
10.1016/j.micromeso.2019.109947
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A comprehensive computational study was performed to develop zeolite-templated carbon (ZTC) materials for efficient carbon dioxide (CO2) and nitrogen (N-2) separation. From the previously reported ZTC structure library, our screening based on the grand canonical Monte Carlo simulations identified the types of top ZTCs having high selectivity (S-CO2/N2) of CO2 over N-2. A detailed investigation about pore structure-property relationship elucidated that high S-CO2/N2 is attributed to the strong confinement effect on CO2 gas molecules in small pores. Furthermore, with an attempt to further improve S-CO2/N2 we investigated two approaches which are nitrogen doping and ionic liquid incorporation. Our simulations predicted that nitrogen-doped or ionic liquid incorporated ZTCs exhibited enhanced S-CO2/N2 due to strong interaction between CO2 and negatively charged nitrogen atom or anions in ionic liquid, respectively. While both approaches have provided promises in upgrading ZTCs for high S-CO2/N2 observation of the exceptional cases which showed insignificant changes in S-CO2/N2 suggested that design strategy might be altered in accordance with the structural feature of ZTC, representatively, pore topology. Our case study for ZTC-IRR demonstrates that a strategy devised with a deep understanding of pore topology can significantly improve S-CO2/N2 of ZTC.
引用
收藏
页数:6
相关论文
共 59 条
[1]   Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide [J].
Anbia, Mansoor ;
Hoseini, Vahid .
CHEMICAL ENGINEERING JOURNAL, 2012, 191 :326-330
[2]   Nitrogen-Doped Mesoporous Carbon for Carbon Capture - A Molecular Simulation Study [J].
Babarao, Ravichandar ;
Dai, Sheng ;
Jiang, De-en .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (12) :7106-7110
[3]   Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture [J].
Bae, Tae-Hyun ;
Hudson, Matthew R. ;
Mason, Jarad A. ;
Queen, Wendy L. ;
Dutton, Justin J. ;
Sumida, Kenji ;
Micklash, Ken J. ;
Kaye, Steven S. ;
Brown, Craig M. ;
Long, Jeffrey R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (01) :128-138
[4]   Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture [J].
Bae, Youn-Sang ;
Snurr, Randall Q. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (49) :11586-11596
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Generating carbon schwarzites via zeolite-templating [J].
Braun, Efrem ;
Lee, Yongjin ;
Moosavi, Seyed Mohamad ;
Barthel, Senja ;
Mercado, Rocio ;
Baburin, Igor A. ;
Proserpio, Davide M. ;
Smit, Berend .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (35) :EB116-EB124
[7]   Membrane technologies for CO2 separation [J].
Brunetti, A. ;
Scura, F. ;
Barbieri, G. ;
Drioli, E. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) :115-125
[8]   Ionic Liquid/Metal-Organic Framework Composite for CO2 Capture: A Computational Investigation [J].
Chen, Yifei ;
Hu, Zhongqiao ;
Gupta, Krishna M. ;
Jiang, Jianwen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (44) :21736-21742
[9]   An Amine-Functionalized MIL-53 Metal-Organic Framework with Large Separation Power for CO2 and CH4 [J].
Couck, Sarah ;
Denayer, Joeri F. M. ;
Baron, Gino V. ;
Remy, Tom ;
Gascon, Jorge ;
Kapteijn, Freek .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (18) :6326-+
[10]   RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials [J].
Dubbeldam, David ;
Calero, Sofia ;
Ellis, Donald E. ;
Snurr, Randall Q. .
MOLECULAR SIMULATION, 2016, 42 (02) :81-101