Augmentation of low frequency damping via hydrogen-doping in a hybrid shape memory alloy composite

被引:1
作者
Nagrale, Shashank [1 ]
Brown, Avery D. [1 ]
Bakis, Charles E. [1 ]
Hamilton, Reginald F. [1 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, 212 Earth Engn Sci Bldg, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Shape memory alloy; internal friction; damping; hydrogen doping; NiTi-CFRP; hybrid composites; NITI-BASED ALLOYS; DOPED NITI; BEHAVIOR; TEMPERATURES; MARTENSITE; CAPACITY;
D O I
10.1177/1045389X211039021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon fiber reinforced polymer (CFRP) composites hybridized with hydrogen-doped NiTi wires can be used to design structures requiring high stiffness and high damping in the low frequency range, such as helicopter blades. The current work investigates aging and hydrogen-doping for high damping without hydrogen embrittlement. We establish a hydrogenation treatment that (i) results in a response that is repeatable in the martensitic phase and after exposure to composite processing temperatures and (ii) increases the loss factor in NiTi wires by nearly 470%. By embedding H-doped wires exhibiting the highest damping into the interlayers of a [0/+/- 45](s) carbon/epoxy laminate at a volume fraction of 0.1, the hybrid NiTi-CFRP composite loss factor increases by 170%. The measured dynamic properties were found to be close to micromechanical predictions based on the properties of the NiTi and CFRP.
引用
收藏
页码:1018 / 1027
页数:10
相关论文
共 36 条
[1]   Dynamic mechanical response of a Ni45.7Ti29.3Hf20Pd5 alloy [J].
Acar, Emre .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 633 :169-175
[2]  
[Anonymous], 2009, E144709A ASTM INT
[3]   Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study [J].
Bachmann, F. ;
de Oliveira, R. ;
Sigg, A. ;
Schnyder, V. ;
Delpero, T. ;
Jaehne, R. ;
Bergamini, A. ;
Michaud, V. ;
Ermanni, P. .
SMART MATERIALS AND STRUCTURES, 2012, 21 (07)
[4]   Passive damping of slender and light structures [J].
Bassani, P. ;
Biffi, C. A. ;
Carnevale, M. ;
Lecis, N. ;
Previtali, B. ;
Lo Conte, A. .
MATERIALS & DESIGN, 2013, 45 :88-95
[5]   A review on shape memory alloy reinforced polymer composite materials and structures [J].
Bhaskar, Jitendra ;
Kumar Sharma, Arun ;
Bhattacharya, Bishakh ;
Adhikari, Sondipon .
SMART MATERIALS AND STRUCTURES, 2020, 29 (07)
[6]   Extraordinary high damping of hydrogen-doped NiTi and NiTiCu shape memory alloys [J].
Biscarini, A ;
Coluzzi, B ;
Mazzolai, G ;
Tuissi, A ;
Mazzolai, FM .
JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 355 (1-2) :52-57
[7]   Martensitic transitions and mechanical spectroscopy of Ni50.8Ti49.2 alloy containing hydrogen [J].
Biscarini, A ;
Campanella, R ;
Coluzzi, B ;
Mazzolai, G ;
Trotta, L ;
Tuissi, A ;
Mazzolai, FM .
ACTA MATERIALIA, 1999, 47 (18) :4525-4533
[8]  
Blackwell R., 2008, Annual Forum Proceedings -American Helicopter Society, V4, P886
[9]   Damping behavior of TiNi-based shape memory alloys [J].
Cai, W ;
Lu, XL ;
Zhao, LC .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 394 (1-2) :78-82
[10]   Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analysis [J].
Chang, S. H. ;
Wu, S. K. .
MATERIALS CHARACTERIZATION, 2008, 59 (08) :987-990